
Avendesora Documentation
Release 1.25

Ken Kundert

Apr 23, 2023

Contents

1 What is Avendesora? 3

2 Quick Tour 5

3 Issues 9

4 Contributing 11

5 Contents 13

Index 123

i

ii

Avendesora Documentation, Release 1.25

Version: 1.25
Released: 2023-04-22
Please report all bugs and suggestions at Github (or contact me directly at avendesora@nurdletech.com).

Contents 1

https://github.com/KenKundert/avendesora/issues
mailto://avendesora@nurdletech.com

Avendesora Documentation, Release 1.25

2 Contents

CHAPTER 1

What is Avendesora?

Avendesora holds all of your account information. In addition to the username and password, it holds any account
information you might want such as account numbers, PINs, verbal passwords, one-time passwords, security questions,
URLs, email addresses, phone numbers, etc. Avendesora is a secure repository for all of this information, using GPG
to keep the information safe.

Account secrets, such as passwords and such can either be saved, as with password vaults, or they can be generated by
Avendesora. Generation is quite flexible and is generally preferred as it makes the secrets extremely hard to predict,
in most cases eliminating the risk they could be cracked. Avendesora generates secrets from a random seed. The seed
can be shared with a collaborator, and once shared, either collaborator can create new shared passwords.

You can query Avendesora directly from the command line. When doing so you can either display account information
or copy it to the clipboard. You can also configure a hot-key to run Avendesora, in which case it determines which
information is needed from context and then fills it into the active application. In this way Avendesora can directly
enter account information into your browser, email client, shell, etc. The information Avendesora provides can be used
to log you in, answer security questions, enter your credit card number, etc.

Avendesora is a program that is deeply steeped in Unix traditions. It operates primarily from the command line and
leans heavily on programs you are likely already familiar with, such as Python, GPG, and Vim. As such, it should be
both welcoming and powerful for those that are comfortable with Unix and its utilities. Also, it is fully open source,
so you can change it if you do not like some aspect of it. Please consider contributing your enhancements back to the
project. Here are some of the ways Avendesora differs from more traditional password managers:

Private

• Local storage and operation

• Open source (no back doors)

Secure

• GPG encryption

Flexible

• Free form account data

• Generates secret passcodes in a wide variety of styles

3

Avendesora Documentation, Release 1.25

• Configurable account recognition and autotype

Powerful

• Python API

• Numerous companion programs

• Collaboration support

• Time-based one-time password support (TOTP)

Efficient

• Keyboard centric

• Edit accounts with your favorite text editor (Vim, etc.)

Private

• Supports stealth accounts and secret misdirection for sensitive and high value secrets; they help
you avoid giving up your secrets while under duress

Well Documented

• Command line help

• Online documentation

4 Chapter 1. What is Avendesora?

https://avendesora.readthedocs.io

CHAPTER 2

Quick Tour

With Avendesora you create files that contain information about your accounts. Avendesora accesses that information
and shows it to you when you need it. The files can be encrypted with GPG, and so are quite secure. The information
itself is grouped into accounts, with an account consisting of both secret and non-secret information. The non-secret
information includes such things as user names, email addresses, phone numbers, etc. The secret information includes
passwords, pins, security questions and such. Information is free form. You decide what information you want to
associate with an account, what you call it, and whether it is secret or not. There are two types of secrets: remembered
secrets and generated secrets.

In general, it is best to use generated secrets if you can. They are preferred for two reasons. First, generated passwords
are pretty much assured of having high entropy, and entropy in your passwords is like fiber in your diet, the more the
better because it results in passwords that resist cracking. Second, you can easily share generated secrets with your
collaborators without risk of exposing to secrets to others.

As a demonstration, consider adding an account for FasTrak, a payment service for toll roads in the San Francisco bay
area. First you would add the account:

> avendesora add website

This indicates that Avendesora should create a new account in the default accounts file based on the website template.

Avendesora responds by opening your editor with a rough template containing the fields needed for a typical website
account. You should modify it to suit your needs. For example, your entry for FasTrak might look like this:

class FasTrak(Account):
desc = 'payment service for automated toll collection'
aliases = 'fastrack fasttrack'
username = 'rand36'
email = 'rand36@dragon.com'
passcode = PasswordRecipe('12 2u 2d 2s')
discovery = RecognizeURL(

'https://www.bayareafastrak.org',
script='{username}{tab}{passcode}{return}'

)
questions = [

(continues on next page)

5

Avendesora Documentation, Release 1.25

(continued from previous page)

Question('City in which you were born?')
Question('What was the name of you high school?')

]
pin = PIN(length=4)

This is Python code. An account is created by declaring a subclass of Account. The account information is given
as class attributes. Avendesora supports string, list, and dictionary attributes. You create secrets by instantiating a
Secrets class. This example uses three different secrets, all of which are generated: PasswordRecipe(), Question() and
PIN(). First consider PIN(). Notice that you do not give a PIN number, you instead just specify how long it should
be. Avendesora generates a PIN for you at random. With PasswordRecipe() you do not specify the password, you
specify how long it should be and what kind of characters it should use (in this case, 12 long including 2 uppercase, 2
digits, and 2 symbols). Question() is used to generate random answers to security questions. Again, you do not give
the answer, you give the question and the answer is generated at random. It is the unpredictability of these values that
make them secure.

Once the information is entered for your account, you can see the values by running the following commands (of
course if you try this example your results will differ):

> avendesora value fastrak passcode
passcode: 0GPD;mc3XC?c

> avendesora value fastrak questions.0
questions.0 (City in which you were born?): voyager interview gaudy

> avendesora value fastrak pin
pin: 2728

You can also access the account values that are not secret in a similar manner:

> avendesora value fastrak username
username: rand36

The difference is that Avendesora erases secrets from the screen after displaying them for a minute, which is not done
with non-secrets.

There are various tricks available to reduce the amount you type. For example:

> avendesora fastrak
username: rand36
passcode: 0GPD;mc3XC?c

If you give an account name without a command, the credentials command is run, which displays the username and
password for the specified account.

> avendesora fastrak pin
pin: 2728

In this case the account and field name was given, but not a command name. When more than one argument is given,
and the first is not recognized as a command, the value command is run.

The discovery attribute is used by Avendesora to associate an account to a URL or URLs. You can visit the FasTrak
website using:

> avendesora browse fastrak

This runs the browse command, which opens the URL for the account in your web browser. You can shorten browse
to b (the most common Avendesora commands have one or two character aliases). Running that command opens your

6 Chapter 2. Quick Tour

Avendesora Documentation, Release 1.25

browser if it is not already open, and navigates to the FasTrak URL. Generally you would run this command directly
from your window manager, which allows you to navigate to your account without opening a shell.

The information provided to discovery also allows the desired account to be recognized, which allows you to directly
enter values into an application, in this case the web browser, with a single keystroke. To do so, you would associate
Avendesora with a keyboard shortcut (a hot key), such as Alt-a (‘a’ for Avendesrsora), Alt-p (‘p’ for password), or
Alt-Space (for convenience). Once the webpage is open, simply click on the Username field and type your shortcut
(Alt-p). This runs Avendesora, which then looks at the current environment to determine which account to use. In
the case of RecognizeURL() it is looking for the URL in the browser’s window title. Avendesora checks with all the
accounts and finds that only FasTrak matches, at which point it executes the given script, which produces the user
name and passcode.

This approach is a very secure way to access your account because:

1. Using the browse command assures you are using a known-good URL, preventing you from being phished.

2. If you do fall prey to a phishing scheme, Avendesora will not recognize the URL and so will not disclose your
account credentials.

3. Avendesora warns you if you are attempting to provide your account credentials to an insecure webpage (an http
page rather than an https page).

Here are some other convenient Avendesora commands.

The edit command opens an account in your editor, allowing you to update the account values:

> avendesora edit amtrak

The find command finds accounts whose name contain a string of characters in the name or alias. Notice that I tend to
add common misspellings as aliases.

> avendesora find track
track:

amtrak (amtrack)
fastrak (fastrack, fasttrack)
python-bug-tracker

The search command finds accounts whose attributes contain a string of characters. Only attributes whose values are
not secret are examined.

> avendesora search junior
junior:

gmail
fidelity

The values command prints out a summary of all the account attributes. The secrets are not printed with this command.

> avendesora values fastrak
names: fastrak, fastrack, fasttrack
email: rand36@dragon.com
passcode: <reveal with 'avendesora value fastrak passcode'>
pin: <reveal with 'avendesora value fastrak pin'>
questions:

0: City in which you were born? <reveal with 'avendesora value fastrak questions.0
→˓'>

1: What was the name of you high school? <reveal with 'avendesora value fastrak
→˓questions.1'>
username: rand36

Finally, you can use the help command to get information on the various commands and other useful topics.

7

Avendesora Documentation, Release 1.25

8 Chapter 2. Quick Tour

CHAPTER 3

Issues

Please ask questions or report problems on Github.

9

https://github.com/KenKundert/avendesora/issues

Avendesora Documentation, Release 1.25

10 Chapter 3. Issues

CHAPTER 4

Contributing

Contributions are welcome. One thing that Avendesora would really benefit from is a browser plugin that would allow
it to interact with websites.

11

Avendesora Documentation, Release 1.25

12 Chapter 4. Contributing

CHAPTER 5

Contents

5.1 Conceptual Underpinnings

5.1.1 Generated Secrets

Account secrets can be saved in encrypted form, as with password vaults, or generated from a root secret. Generated
secrets have several important benefits. First, they are produced from a random seed, and so are quite unpredictable.
This is important, because predictability can be exploited when cracking passwords. Second, if the root secret is
shared with another trusted party, then you both can generate new shared secrets without passing any further secrets.
Furthermore, if you keep a copy of the root secret, say in a safe deposit box, then there is a good chance you can
resurrect your secrets if you happen to lose your accounts files. Finally, with generated secrets, it is possible to have
stealth secrets, which are secrets for which there is absolutely no evidence.

Secrets are generated from a collection of seeds, one of which must be random with a very high degree of entropy.
The random seed is referred to as the ‘master seed’. It is extremely important that the master seed remain completely
secure. Never disclose a master seed to anyone except for a person you wish to collaborate with, and then only use
the shared master seed for shared secrets. Each file that contains accounts will contain a master seed for the accounts
it holds. Typically, you would have one file to hold your private accounts, and then one file for every group of people
you collaborate with.

A secret is generated by combining a master seed with several other seeds, such as the account name, the secret name,
and perhaps a version name. The combination is then hashed to form a long binary number that is unique to your
secret. From there the number is transformed into a usable form by one of the Secrets classes. PIN() converts it to a
sequence of digits, Password() converts it to a sequence of characters, Passphrase converts it to a sequence of words,
etc.

For example, consider the following rather abbreviated accounts file:

from avendesora import Account, Passphrase

master_seed = 'c2VjcmV0IG1lc3NhZ2UsIHN1Y2Nlc3NmdWxseSBkZWNvZGVkIQ'

class Login(Account):
(continues on next page)

13

Avendesora Documentation, Release 1.25

(continued from previous page)

username = 'rand'
passcode = Passphrase()

This file contains one secret, the login passphrase for Rand. In this case, the master seed is combined with the words
‘login’ (the account name, down cased) and ‘passcode’ (the attribute name); the combination is hashed, and the hash
is used to generate the passphrase. The words in the passphrase are chosen at random from a dictionary of roughly
10,000 words. The first word is chosen by taking the first 14 bits from the hash and using that number to select a
word. The second word is chosen using the next 14 bits, and so on. The hash is constructed such that even the smallest
changes in any seed results in a completely different hash. As such, the resulting passphrase is quite unpredictable:

> avendesora login
username: rand
passcode: dither estate cockroach flavoring

The passcode itself is not stored, rather it is the seeds that are stored and the passcode is regenerated when needed.
Notice that all the seeds except the master seed need not be kept secure. Thus, once you have shared a master seed
with a collaborator, all you need to do is share the remaining seeds and your collaborator can generate exactly the
same passcode.

Another important thing to notice is that the generated passcode is dependent on the account and secret names. Thus
if you rename your account or your secret, the passcode will change. So you should be careful when you first create
your account to choose names appropriately so you don’t feel the need to change them later.

5.1.2 Entropy

A 4 word Avendesora password provides 53 bits of entropy, which seems like a lot, but NIST is recommending 80 bits
for your most secure passwords. So, how much is actually required? It is worth exploring this question.

Entropy is a measure of how hard the password is to guess. Specifically, it is the base two logarithm of the likelihood
of guessing the password in a single guess. Every increase by one in the entropy represents a doubling in the difficulty
of guessing your password. The actual entropy is hard to pin down, so generally we talk about the minimum entropy,
which is the likelihood of an adversary guessing the password if he or she knows everything about the scheme used to
generate the password but does not know the password itself. So in this case the minimum entropy is the likelihood
of guessing the password if it is known that we are using 4 space separated words as our passphrase where the words
are selected at random with a uniform distribution from a known list. This is very easy to compute. There are roughly
10,000 words in our dictionary, so if there was only one word in our passphrase, the chance of guessing it would be
one in 10,000 or 13 bits of entropy. If we used a two word passphrase the chance of guessing it in a single guess is one
in 10,000*10,000 or one in 100,000,000 or 26 bits of entropy.

The probability of guessing our passphrase in one guess is not our primary concern. Really what we need to worry
about is given a determined attack, how long would it take to guess the password. To calculate that, we need to know
how fast our adversary could try guesses. If they are trying guesses by typing them in by hand, their rate is so low,
say one every 10 seconds, that even a one word passphrase may be enough to deter them. This is why bank PINs can
be so short. Our one word passphrase provides roughly the same security as a four digit PIN. Alternatively, they may
have a script that automatically tries passphrases through a login interface. Again, generally the rate is relatively slow.
Perhaps at most they can get is 1000 tries per second. In this case they would be able to guess a one word passphrase
in 10 seconds and a two word passphrase in a day, but a 4 word passphrase would require 300,000 years to guess in
this way.

The next important thing to think about is how your password is stored by the machine or service you are logging into.
The worst case situation is if they save the passwords in plain text. In this case if someone were able to break in to
the machine or service, they could steal the passwords. Saving passwords in plain text is an extremely poor practice
that was surprisingly common, but is becoming less common as companies start to realize their liability when their
password files get stolen. Instead, they are moving to saving passwords as hashes. A hash is a transformation that is

14 Chapter 5. Contents

Avendesora Documentation, Release 1.25

very difficult to reverse, meaning that if you have the password it is easy to compute its hash, but given the hash it is
extremely difficult to compute the original password. Thus, they save the hashes (the transformed passwords) rather
than the passwords. When you log in and provide your password, it is transformed with the hash and the result is
compared against the saved hash. If they are the same, you are allowed in. In that way, your password is not stored
and so is no longer available to thieves that break in. However, they can still steal the file of hashed passwords, which
is not as good as getting the plain text passwords, but it is still valuable because it allows thieves to greatly increase
the rate that they can try passwords. If a poor hash was used to hash the passwords, then passwords can be tried at a
very high rate. For example, it was recently reported that password crackers were able to try 8 billion passwords per
second when passwords were hashed with the MD5 algorithm. This would allow a 4 word passphrase to be broken in
14 days, whereas a 6 word password would still require 4,000,000 years to break. The rate for the more computational
intensive sha512 hash was only 2,000 passwords per second. In this case, a 4 word passphrase would require 160,000
years to break.

In most cases you have no control over how your passwords are stored on the machines or services that you log into.
Your best defense against the notoriously poor security practices of most sites is to always use a unique password
for sites where you are not in control of the secrets. That way the poor security practices of one site would not
compromise your other accounts. For example, you might consider using the same passphrase for your login password
and the passphrase for an ssh key on a machine that you administer, but never use the same password for two different
websites unless you do not care if the content of those sites become public.

So, if we return to the question of how much entropy is enough, you can say that for important passwords where you
are in control of the password database and it is extremely unlikely to get stolen, then four randomly chosen words
from a reasonably large dictionary is plenty. If what the passphrase is trying to protect is very valuable and you do
not control the password database (ex., your brokerage account) you might want to follow the NIST recommendation
and use 6 words to get 80 bits of entropy. If you are typing passwords on your work machine, many of which employ
keyloggers to record your every keystroke, then no amount of entropy will protect you from anyone that has or gains
access to the output of the keylogger. In this case, you should consider things like one-time passwords or two-factor
authentication. Or better yet, only access sensitive accounts from your home machine and not from any machine that
you do not control.

5.2 Installing and First Use

Install with:

pip3 install --user avendesora

This will place avendesora in ~/.local/bin, which should be added to your path.

You will also need to install some operating system commands. On Redhat systems (Fedora, Centos, Redhat) use:

dnf install gnupg2 xdotool xsel

You should also install python-gobject. Conceivably this could be installed with the above pip command, but gobject
appears broken in pypi, so it is better use the operating system’s package manager to install it. See the setup.py file for
more information. On Redhat systms use:

dnf install python3-gobject

Gobject is only used to provide a user-interactive selection utility. However, if you prefer, you can use dmenu for your
selection utility, in which case you will need to install it by hand using:

dnf install dmenu

If you would like to use scrypt as a way of encrypting fields, you will need to install scrypt by hand using:

5.2. Installing and First Use 15

Avendesora Documentation, Release 1.25

pip3 install --user scrypt

5.2.1 GPG Key

To use Avendesora, you will need GPG and you will need a GPG ID that is associated with a private key. That GPG
ID could be in the form of an email address or an ID string that can be found using ‘gpg –list-keys’.

If you do not yet have a GPG key, you can get one using:

$ gpg --gen-key

You should probably choose 4096 RSA keys. Now, edit ~/.gnupg/gpg-conf and add the line:

use-agent

That way, you generally need to give your GPG key passphrase less often. The agent remembers the passphrase for
you for a time. Ten minutes is the default, but you can configure gpg-agent to cache passphrases for as long as you
like.

If you use the agent, be sure to also use screen locking so your passwords are secure when you walk away from your
computer.

5.2.2 Vim

If you use Vim, it is very helpful for you to install GPG support in Vim. To do so first download:

http://www.vim.org/scripts/script.php?script_id=3645

Then copy the file into your Vim configuration hierarchy:

cp gnupg.vim ~/.vim/plugin

5.2.3 Initializing Avendesora

To operate, Avendesora needs a collection of configuration and accounts files that are stored in ~/.config/avendesora.
To create this directory and the initial versions of these files, run:

avendesora initialize -g <gpg_id>

For example:

avendesora initialize -g rand@dragon.com

or:

avendesora initialize -g 1B2AFA1C

If you would like to have more than one person access your passwords, you should give GPG IDs for everyone:

avendesora initialize -g rand@dragon.com,lews.therin@dragon.com

After initialization, there should be several files in ~/.config/avendesora. In particular, you should see at least an initial
accounts files and a config file.

16 Chapter 5. Contents

Avendesora Documentation, Release 1.25

5.2.4 Initial Configuration

The config file (~/.config/avendesora/config) allows you to personalize Avendesora to your needs. The available
configuration settings are documented in ~/.config/avendesora/config.doc. After initializing your account you should
take the time to review your configuration and adjust it to fit your needs. You should be very thoughtful in this initial
configuration, because some decisions (or non-decisions) you make can be very difficult to change later. The reason
for this is that they may affect the passwords you generate, and if you change them you may change existing generated
passwords. In particular, be careful with dictionary_file. Changing this value when first initializing Avendesora is fine,
but should not be done or done very carefully once you start creating accounts and secrets.

During an initial configuration is also a convenient time to determine which of your files should be encrypted with
GPG. To assure that a file is encrypted, give it a GPG file suffix (.gpg or .asc). The appropriate settings to adjust
are: archive_file, log_file, both of which are set in the config file, and the accounts files, which are found in ~/.con-
fig/avendesora/.accounts_files. For security reasons it is highly recommended that the archive file be encrypted, and
any accounts file that contain sensitive accounts. If you change the suffix on an accounts file and you have not yet
placed any accounts in that file, you can simply delete the existing file and then regenerate it using:

avendesora initialize -g <gpg_id>

Any files that already exist will not be touched, but any missing files will be recreated, and this time they will be
encrypted or not based on the extensions you gave.

More information on the various configuration options can be found in Configuring.

5.2.5 Configuring Your Window Manager

You will want to configure your window manager to run Avendesora when you type a special hot key, such as Alt
p. The idea is that when you are in a situation where you need a secret, such as visiting your bank’s website in your
browser, you can click on the username field with your mouse and type your hot key. This runs Avendesora without
an account name. In this case, Avendesora uses account discovery to determine which secret to use and the script that
should be used to produce the required information. Generally the script would be to enter the username or email, then
tab, then the passcode, and finally return, but you can configure the script as you choose. This is all done as part of
configuring discovery.

The method for associating Avendesora to a particular hot key is dependent on your window manager.

Gnome:

With Gnome, you must open your Keyboard Shortcuts preferences and create a new shortcut. When you
do this, choose ‘avendesora value’ as the command to run.

I3:

Add the following to your I3 config file (~/.config/i3/config):

bindsym $mod+p exec --no-startup-id avendesora value

OpenBox:

Key bindings are found in the <keyboard> section of your rc.xml configuration file. Add a key binding
for Avendesora like this:

<keyboard>
...

<keybind key="A-p">
<action name="Execute">

<command>avendesora value</command>

(continues on next page)

5.2. Installing and First Use 17

Avendesora Documentation, Release 1.25

(continued from previous page)

</action>
</keybind>

...
</keyboard>

5.2.6 Configuring Your Browser

Finally, to improve account discovery, it is recommended that you add a plugin to your web browser that puts the URL
into the window title. How to do so is described in Account Discovery.

5.3 Overview

Use of Avendesora will be illustrated through a series of examples. However, before starting it is helpful to know that
Avendesora provides several commands to help you use it. First, it provides a help command:

> avendesora help

This lists the available help topics. You can ask about a specific topic using:

> avendesora help <topic>

Adding the –browse option allows you to access the online version of the manual through your web browser. For
example,

> avendesora help -b accounts

When things go wrong, you can use log command to quickly view the log file:

> avendesora log

The logfile is kept in the ~/.config/avendesora directory and this command opens it directly in your editor. It can be
very helpful in debugging account discovery issues.

At this point you should have initialized your accounts and configured your window manager and done the initial
configuration of Avendesora.

5.3.1 Shell Account

In this example an account is provisioned to hold your Unix login password. You will not be able to use Avendesora
to autotype your passcode when you login into your account, but you will be able to use it to enter the passcode when
running shell commands like sudo.

To start, run the command to add an account. By default, three account templates are available. They are, in order
of complexity: shell, website, and bank. The shell template assumes that there is only a passcode and any account
discovery would be through the window title rather than by examining a URL.

To provision the new account use:

> avendesora add shell

Your editor should open with something that looks like this:

18 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class _NAME_(Account):
desc = '_DESCRIPTION_'
aliases = '_ALIAS1_ _ALIAS2_'
passcode = Passphrase()

Avendesora: Alternatively use PasswordRecipe('12 2u 2d 2s')
Avendesora: or '12 2u 2d 2c!@#$&' to specify valid symbol characters.

discovery = RecognizeTitle(
'_TITLE1_', '_TITLE2_',
script='{passcode}{return}'

)

Avendesora: Tailor the account entry to suit you needs.
Avendesora: You can add or delete class attributes as you see fit.
Avendesora: The 'n' key should take you to the next field name.
Avendesora: Use 'cw' to specify a field name, or delete it if unneeded.
Avendesora: Fields surrounded by << and >> will be hidden.
Avendesora: All lines that begin with '# Avendesora:' are deleted.

In this example it is assumed that your editor is Vim. You would jump to the first field by typing ‘n’ (next) and then
modify the field by typing ‘cw’ (change word). In this example the first ‘n’ takes you to _NAME_ and you would
use ‘cw’ to change it to LinuxLogin. You should choose your account name carefully. Once set, you should never
change an account name because it will result in the generated secrets associated with the account changing. If there
is a chance that you might have more than one linux account, you should add more to the account name to make it
unique. You can always provide a short easy to type alternative as an alias. For example, in this case the account
username is x57107048, so you might want to add that to the account name to make it unique. Once you have entered
the account name, hit ‘Esc’ to exit insert mode and type ‘n’ to go to the next field, _DESCRIPTION_. The account
name is probably all the description we need, so you can simply delete this whole field by typing ‘dd’ (delete line).
Moving on, you can replace the aliases with ‘login’ and ‘linux’. You can add additional aliases or delete the ones you
don’t need. We will assume that you want to add your username, which was not anticipated by the template. To do so
type ‘o’ to open a new line and type:

username = 'x57107048'

In general using passphrases is preferred to using passwords, the reason being that they are much easier to remember
and type. That is important in this case because you will need to remember and enter your passcode when you login
to your computer; Avendesora cannot help you in that case. The template was configured to use a passphrase for the
passcode, so no change is needed here.

Finally replace the titles with ‘sudo *’. Once you have something that looks like this, you can exit the editor with
‘ZZ’:

class LinuxLogin(Account):
aliases = 'linux login'
username = 'x57107048'
passcode = Passphrase()

Avendesora: Alternatively use PasswordRecipe('12 2u 2d 2s')
Avendesora: or '12 2u 2d 2c!@#$&' to specify valid symbol characters.

discovery = RecognizeTitle(
'sudo *',
script='{passcode}{return}'

)

Avendesora: Tailor the account entry to suit you needs.
Avendesora: You can add or delete class attributes as you see fit.
Avendesora: The 'n' key should take you to the next field name.
Avendesora: Use 'cw' to specify a field name, or delete it if unneeded.

(continues on next page)

5.3. Overview 19

Avendesora Documentation, Release 1.25

(continued from previous page)

Avendesora: Fields surrounded by << and >> will be hidden.
Avendesora: All lines that begin with '# Avendesora:' are deleted.

There is no need to delete the embedded Avendesora instructions, they are deleted automatically when you save the
file.

If you were to immediately edit the account again with:

> avendesora edit linuxlogin

you should see something like this:

class LinuxLogin(Account):
aliases = 'linux login'
username = 'x57107048'
passcode = Passphrase()
discovery = RecognizeTitle(

'sudo *',
script='{passcode}{return}'

)

Notice that all the Avendesora instructions were removed.

You can show all the values associated with this account using the values command:

> avendesora values LinuxLogin
names: linuxlogin, linux, login
passcode: <reveal with 'avendesora value linuxlogin passcode'>
username: x57107048

Notice that the passcode is considered secret, so Avendesora does not actually show it when displaying all of the
values. To see it, use:

> avendesora value LinuxLogin passcode
passcode: wigwam mistrust afflict refit

The value command: command will also write the secret directly to the clipboard:

> avendesora value --clipboard LinuxLogin passcode

By default Avendesora is configured to use the primary clipboard. You use the middle mouse button to paste from the
primary clipboard. You can also modify the xsel_executable setting to modify this behavior.

You can also write directly to the standard output (normally Avendesora writes to the TTY so that it can erase any
secrets after a minute has elapsed). In this way you can use Avendesora within shell scripts (but you should consider
rewriting you script in Python using the Avendesora API):

> avendesora value -s login 'user="{username}:{passcode}"' | curl -K - https://mywork.
→˓com/~x57107048/latest

In this example, I needed to create a arbitrary string containing the username and password, so I combined Avendes-
ora’s script feature with the –stdout (-s) option to produce and pass the needed string to curl through a pipe.

You can also have Avendesora attempt to show you your login credentials for the account using:

> avendesora login LinuxLogin
username: x57107048
passcode: wigwam mistrust afflict refit

20 Chapter 5. Contents

Avendesora Documentation, Release 1.25

To show the login credentials Avendesora looks for candidate usernames (username, email) and candidate passcodes
(passcode, password, passphrase), though you can specify exactly which fields are used by adding a credential_ids
and credential_secrets fields in the account.

Short Cuts

Avendesora offers many ways to allow you to reduce or simplify your typing. In particular:

1. The account name is case insensitive:

> avendesora login linuxlogin
username: x57107048
passcode: wigwam mistrust afflict refit

2. You can give an alias rather than the account name:

> avendesora login linux
username: x57107048
passcode: wigwam mistrust afflict refit

3. Many of the command names have single letter abbreviations:

> avendesora l linux
username: x57107048
passcode: wigwam mistrust afflict refit

4. On the value command, if you do not specify a field, it will offer the passcode, password, or passphrase if
available:

> avendesora v linux
passcode: wigwam mistrust afflict refit

5. If there is one argument and it is not recognized as a command name, it is treated as the account name and your
login credentials are displayed:

> avendesora linux
username: x57107048
passcode: wigwam mistrust afflict refit

6. If there is more than one argument and the first is not recognized as a command name, it is treated as the account
name and the value command is run:

> avendesora linux username
x57107048

7. Finally, people often alias ‘pw’ to ‘avendesora’ in their shell to make running Avendesora easier:

> pw linux
username: x57107048
passcode: wigwam mistrust afflict refit

Auto Entry

Your LinuxLogin account was provisioned with account discovery by way of the window title. This assumes that your
shell adds the currently running command to the window title. Most shells are configured to do this by default, or can
be configured to do so, though it may take some digging on the web to find the magic incantation to do so. Notice that

5.3. Overview 21

Avendesora Documentation, Release 1.25

one window title was given: ‘sudo *’. This matches a sudo command with arguments (‘*’ is a wildcard character that
matches any string of characters). To try out the account discovery, type:

> sudo make me a sandwich
[sudo] password for x57107048: <Alt-p>

Here <Alt-p> indicates that you should type your Avendesora hot key (hopefully you set this up earlier). It should run
‘avendesora value’. Since no account was given with this command, Avendesora attempts to discover which account
should be used. It does so by offering the window title to each account provisioned with account discovery to see
which account it matches. Assume it only matches LinuxLogin. Then the corresponding discovery script is run, in
which case is ‘{passcode}{return}’. This script simulates the keyboard and types the passcode and then types the
enter key, which should authenticate you with sudo and allow the command to run. If the window title matches several
accounts, then each is offered up in a selection box and you choose the one you want (use ‘j’ and ‘k’ to navigate to
desired section and ‘Enter’ to select or ‘Esc’ to cancel).

5.3.2 Website Account

In this example an account is provisioned to hold information typical to a website:

> avendesora add website

Your editor should open with something that looks like this:

class _NAME_(Account):
desc = '_DESCRIPTION_'
aliases = '_ALIAS1_ _ALIAS2_'
username = '_USERNAME_'
email = '_EMAIL_'
passcode = PasswordRecipe('12 2u 2d 2s')

Avendesora: length is 12, includes 2 upper, 2 digits and 2 symbols
Avendesora: Alternatively use '12 2u 2d 2c!@#$&' to specify valid symbol characters.
Avendesora: Alternatively use Passphrase()

questions = [
Question("_QUESTION1_?"),
Question("_QUESTION2_?"),
Question("_QUESTION3_?"),

]
urls = '_URL_'

Avendesora: specify urls if there are multiple recognizers.
discovery = RecognizeURL(

'https://_URL_',
script='{email}{tab}{passcode}{return}'

)
Avendesora: Specify list of urls to recognizer if multiple pages need same script.
Avendesora: Specify list of recognizers if multiple pages need different scripts.

Avendesora: Tailor the account entry to suit you needs.
Avendesora: You can add or delete class attributes as you see fit.
Avendesora: The 'n' key should take you to the next field name.
Avendesora: Use 'cw' to specify a field name, or delete it if unneeded.
Avendesora: Fields surrounded by << and >> will be hidden.
Avendesora: All lines that begin with '# Avendesora:' are deleted.

Use ‘n’ to step through the various fields and ‘cw’ to change the field. You can delete any fields that you do not need,
or add any that you do. Here is an example of what it might look like when filled out completely after the instructions
have been removed:

22 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class Elevate84932153377(Account):
desc = 'Virgin America frequent flier plan'
aliases = 'elevate virgin virginamerica'
phone = '1.877.FLY.VIRGIN'
account = '8493-215-3377'
email = 'perrin.aybara@gmail.com'
passcode = PasswordRecipe('12 2u 2d 2s')
questions = [

Question('mothers maiden name?')),
Question('fathers middle name?')),

]
urls = 'https://www.virginamerica.com/cms/elevate-frequent-flyer'
discovery = RecognizeURL(

'https://virginamerica.com',
'https://www.virginamerica.com',
script='{email}{tab}{passcode}{return}'

)

Notice that a very specific name was given to the account. This was done to allow additional Elevate accounts to be
created, which might be needed for other family members or in case your account was ever compromised. Once you
generate secrets from an account it is important that you not change the account name as that will change the values
used for the secrets. Thus, if you choose a very selective account name you are less likely to need to change its name
in the future. Of course, that name would be difficult to type, so you should give simpler names in the account aliases.

You can specify any information you feel is appropriate. Generally that includes the account number and the email
you gave when creating the account.

You can make your passcode a password using PasswordRecipe. In this case you give a string that describes the
characteristics of the password you want. The first value is the length of the password (12 characters), and then
number of required characters of each type (2 upper case, 2 digits, and 2 symbols). If you are restricted to a specific
set of symbols, such as +=_-, you can use ‘2c+=_-’ to signify that two of the specified characters should be included
(ex: PasswordRecipe(‘12 2u 2d 2c+=_-‘). Alternatively, you can specify Passphrase() like in the shell account above.
Or, you can explicitly specify the password. In this case you should indicate that the value is a secret so it is somewhat
protected. There are two ways of doing that.

1. You specify the password as an argument to avendesora.Hide(). Example: Hide('catch22'). In this
case Avendesora protects the value as a secret, but it will show up unconcealed when viewing your account file.

2. You can specify the password embedded in << and >>. For example: <<catch22>>. If you do that, the value is
converted to base64 and passed as an argument to Hidden(). Thus, when you view the account file you will see:
Hidden(“Y2F0Y2gyMg==”). This makes it harder for anybody that happens to glance over your shoulder while
you have your account file open to recognize and remember your password. In this case the encoded password
is not encrypted, and it is easy to recover using Avendesora’s reveal command or the linux base64 command.

Many websites ask ‘security’ questions. These questions represent a back door into your account. If you forget your
password, you can access your account by answering these questions. However, anybody else that happens to know
the answers to these questions, such as your evil twin, can also use them to access your account. Avendesora defeats
your evil twin by generating completely random answers to these personal questions. By default, Question() takes a
string and turns it into three random words (be careful not to change the string after you have given the website the
answers; doing so changes the answers). You can specify as many questions needed.

If you are not free to give arbitrary answers to your questions, such as if the website gives you a small set of acceptable
answers, then you can give the answer along with the question:

questions = [
Question('favorite subject in school?', answer=<<recess>>),
Question('favorite composer?' answer=<<chuck berry>>),

]

5.3. Overview 23

Avendesora Documentation, Release 1.25

The questions command can be used to quickly display the answer to a security question:

> avendesora questions LinuxLogin
0: favorite subject in school?
1: favorite composer?
Which question? 0
questions (favorite subject in school?): recess

The questions command, which can be abbreviated as quest or q, displays all of the questions and you are expected to
then choose one. Once you do, that question is answered.

Lastly this account sets up the web interface by specifying urls and discovery. The urls field is used by the browse
command, which opens your browser and navigates to the login page. For example:

> avendesora browse virgin

This can generally be done directly from your window manager, allowing your to open your account without needing
to use a shell. In Gnome you can do so with Alt-F2 (Run Command). You can get the same functionality from other
window managers by installing and assigning dmenu to a keyboard shortcut.

If you use the browse command on an account without a urls field, Avendesora will try to find one in the discovery
field (it looks for URLs given to an instance of RecognizeURL, however it can get complicated if there is more than
one instance of RecognizeURL. In such cases it is generally better to explicitly specify urls.

The discovery field is used to recognize that this is the account to use when Avendesora is asked to login into the
virginamerica.com site. Notice that several URLs are given to RecognizeURL(), this is necessary when the website
allows you to login using different domain names. RecognizeURL() is a variant of RecognizeTitle() that is attuned
to the titles generated by browsers that have been configured to place the URL in the window title bar. This makes it
more robust in this particular case. Also notice that the expected protocol (https) is given with the URLs. In this way,
Avendesora will refuse to send your login credentials if the connection is not encrypted using the https protocol. The
final argument to RecognizeURL() is the script that logs you in. In this case the script specifies that the value of the
email field should be entered into the browser, followed by a tab, then the passcode, then a return.

It is possible to configure account discovery to support several secrets. To do so, place the recognizers in a list and
specify different scripts for each. For example, many websites ask you to answer your security questions in order to
confirm you are really you. This becomes easier with:

discovery = [
RecognizeURL(

'https://virginamerica.com',
'https://www.virginamerica.com',
script='{email}{tab}{passcode}{return}',
name='login'

),
RecognizeURL(

'https://virginamerica.com',
'https://www.virginamerica.com',
script='{questions}{return}'
name='challenge question'

),
]

In this case if you trigger Avendesora (using Alt-p) while on the Virgin America website, it will respond by asking you
if you want to login or answer a challenge question (in this case both recognizers trigger, forcing the choice). You can
give different URLs for each case so that the choice is made automatically for you:

discovery = [
RecognizeURL(

(continues on next page)

24 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

'https://www.virginamerica.com/cms/elevate-frequent-flyer',
script='{email}{tab}{passcode}{return}',
name='login'

),
RecognizeURL(

'https://www.virginamerica.com/cms/challenge',
script='{questions}{return}'
name='challenge question'

),
]

5.3.3 Bank Account

Bank accounts are similar to web accounts, but generally contain multiple account numbers and even more secrets.
Create a bank account using:

> avendesora add bank

After you edit the various fields you may end up with something like this:

class MechanicsBank(Account):
aliases = 'mb bank'
username = Passphrase(length=2, sep='_')
email = 'brandelwyn.alVere@aol.com'
checking = <<008860636145>>,
savings = <<029370021509>>,
creditcard = <<5251014820644156>>,
ccv = <<588>>
expiration = <<03/2020>>
ccn = Script('{account.creditcard}{tab}{ccv}{tab}')
passcode = PasswordRecipe('16 2u 2l 2d 2c#%=:_-<>')
verbal = Passphrase(length=2)
questions = [

Question('mothers maiden name?')),
Question('fathers middle name?')),

]
routing = '013521325'
customer_support = '''

credit cards: 800-730-6259
banking: 800-861-5715

'''
urls = 'https://secure.mechanicsbank.com/login'
discovery = RecognizeURL(

'https://mechanicsbank.com',
'https://www.mechanicsbank.com',
'https://secure.mechanicsbank.com',
'https://online.mechanicsbank.com',
script='{username}{tab}{passcode}{return}'

)

In this case, since this account holds real money, a bit more attention is given to security. For example, the username
was specified as a 2 word passphrase, making very unlikely that anyone could guess your username. Furthermore,
your account numbers and your credit-cards CCV number are hidden by decorating them with << >> (you could also
just use avendesora.Hide()).

Also, a verbal password is included. Many financial institutions allow you to set up a verbal password that you use

5.3. Overview 25

Avendesora Documentation, Release 1.25

when calling in. This is an important protection in that it stops people that know you well, such as your evil twin, from
calling in and impersonating you. A short passphrase is perfect for this use as it is easy to communicate to someone
over the phone.

In this example separate fields are used for each account number. If you have access to the accounts of several people,
for example you and your children, you might use a dictionary for the accounts of each person, as follows:

brandelwyn = dict(
checking = <<008860636145>>,
savings = <<029370021509>>,
creditcard = <<5251-0148-2064-4156>>,

)
marin = dict(

checking = <<275137908190>>,
savings = <<874647693848>>,

)
egwene = dict(

checking = <<718467200674>>,
savings = <<623691894130>>,

)

Now to get Egwene’s checking account number you would use:

avendesora bank egwene.checking

Security questions and account discovery are handled as given above.

The ccn or credit card number field is given as a script. With this you can navigate to any website that needs your
credit card number and CCV and enter it by typing:

<Alt-F2> avendesora bank ccn

Here <Alt-F2> is assumed to be the hot key sequence that runs a shell command directly from the window manager
(Gnome uses Alt-F2, but yours may be different). Doing so causes your credit card number, followed by a tab, followed
by your CCV, and followed by another tab to be typed into the page. You could conceivably start by typing your name
and follow with your address, but there is enough variability in websites that this would likely not work on all of them,
so it is generally best to limit the script to a small number of the most helpful fields.

5.3.4 Finding Accounts

Avendesora provides two ways of finding account names if you do not remember them. First is the find command,
which given a bit of text lists all of the accounts that contain that text in their names or their aliases. For example:

> avendesora find bank
bank-america (ba, boa, bofa) -- home mortgage
citibank-mastercard (mc, mastercard, citibank) -- credit card
mechanicsbank (mb bank) -- bank

The next is the search command, which given a bit of text lists all of the accounts that contain that text in any of the
non-secret account values. For example:

> avendesora search bank
bank-america (ba, boa, bofa) -- home mortgage
capitalone (co, ing) -- savings bank
citibank-mastercard (mc, mastercard, citibank) -- credit card
mechanicsbank (mb bank) -- bank
wellsfargo (wf) -- old bank

26 Chapter 5. Contents

Avendesora Documentation, Release 1.25

In both cases the name of the account is listed first followed by the account aliases (within parentheses). The descrip-
tion, if available, is appended to the end.

5.3.5 Modifying Accounts

Once an account exists, it can modified using the edit command:

> avendesora edit bank

This opens the MechanicsBank account in your editor (you can select your editor by modifying the edit_account).
Once you modify your account, you should save the file and exit the editor. The change will be checked and if there
are any errors, you will be given a chance to reopen the account file and fix the problem.

5.3.6 Additional Features

In addition what has already been introduced, Avendesora provides a collection of advanced features. Those include
. . .

• Avendesora supports a wide variety of types of secrets, including support for one-time passwords. These secrets
are described in Account Helpers.

• The archive and changed commands provide an ability to create a backup copy of all your passwords. These
command are described in the section on upgrading.

• Two techniques that provide an extra measure of security for accounts are stealth accounts and misdirection.

• Avendesora provides several ways that help protect you from phishing. You should be aware of these methods
and make sure you use them.

• Avendesora allows you to share master seeds with a partner, and once done allow you to easily and securely
create new shared secrets. This is described in the section on collaboration.

• Once you share a master seed, you can use the identity command as described in confirming identity to securely
verify that you are communicating with your partner.

• You can quickly print out the NATO phonetic alphabet, which can be useful when trying to communicate com-
plex character sequences over the phone.

5.4 Accounts

Account information is stored in account files. The list of account files is given in ~/.config/avendesora/accounts_files.
New account files are created using ‘avendesora new’, but to delete an accounts file, you must manually remove it
from accounts_files. Once an accounts file exists, you may add accounts to it using ‘avendesora add’. Use the -f
option to specify which file is to contain the new account. Modifying or deleting an account is done with ‘avendesora
edit account_name’. To delete the account, simply remove all lines associated with the account.

An account is basically a collection of attributes organized as a subclass of the Python avendesora.Account
class. For example:

class ManetherenTimes(Account):
aliases = 'times mt'
username = 'nynaeve'
email = 'nynaeve@gmail.com'
passcode = PasswordRecipe('12 2u 2d 2s')
discovery = RecognizeURL(

(continues on next page)

5.4. Accounts 27

Avendesora Documentation, Release 1.25

(continued from previous page)

'https://myaccount.manetherentimes.com',
script='{email}{tab}{passcode}{return}'

)

One creates an account using:

> avendesora add <type>

where <type> is either shell, website or bank. Choose the template that seems most appropriate (see overview and add
command for more information) and edit it to your needs.

If after configuring your account you feel the need to change it, you can use the edit command to do so:

> avendesora edit manetherentimes

The account name is case insenstive and can be replaced by one of the aliases. Once created, most of the field values
can be retrieved simply by asking for them. For example:

> avendesora value times username
username: nynaeve

In general, values can be strings, arrays, dictionaries, and special Avendesora classes. For example, you could have an
array of security questions:

questions = [
Question("What is your mother's maiden name?"),
Question("What city were you born?"),
Question("What is first pet's name?"),

]

Then you can request the answer to a particular question using its index:

> avendesora value times questions.0
questions.0 (What is your mother's maiden name?): portrayal tentacle fanlight

questions is the default array field, so you could have shortened your request by using ‘0’ rather than ‘questions.0’.
You might be thinking, hey, that is not my mother’s maiden name. That is because Question is a ‘generated secret’.
It produces a completely random answer that is impossible to predict. Thus, even family members cannot know the
answers to your security questions.

A dictionary is often used to hold account numbers:

class TwoRiversCU(Account):
accounts = {

'checking': '1234-56-7890',
'savings': '0123-45-6789',

}

You then access its values using:

> avendesora value tworiverscu accounts.checking
accounts.checking: 1234-56-7890

You might consider your account numbers as sensitive information. In this case you can hide them with:

28 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class TwoRiversCU(Account):
accounts = {

'checking': Hide('1234-56-7890'),
'savings': Hide('0123-45-6789'),

}

Doing so means that Avendesora will try to protect them from accidental disclosure. For example, it will attempt to
erase the screen after displaying them for a minute. You may also be concerned with someone looking over your
shoulders when you are editing your accounts file and stealing your secrets. To reduce the chance, you can encode the
secrets:

class TwoRiversCU(Account):
accounts = {

'checking': Hidden('MTIzNC01Ni03ODkw'),
'savings': Hidden('MDEyMy00NS02Nzg5'),

}

The values are now hidden, but not encrypted. They are simply encoded with base64. Any knowledgeable person with
the encoded value can decode it back to its original value. Using Hidden makes it harder to recognize and remember
the value given only a quick over-the-shoulder glance. It also marks the value as sensitive, so it will only be displayed
for a minute. You generate the encoded value using the conceal command.

If this is not enough security, you can encrypt the values and access them using avendesora.GPG or
avendesora.Scrypt.

You can find the specifics of how to specify or generate your secrets in Account Helpers.

Any value that is an instance of the avendesora.GeneratedSecret class (avendesora.Password,
avendesora.Passphrase, . . .) or the avendesora.ObscuredSecret class (avendesora.Hide,
avendesora.Hidden, avendesora.GPG, . . .) is considered sensitive. It is only given out in a controlled
manner. For example, running the values command displays all fields, but the values that are sensitive are replaced by
instructions on how to view them. They can only be viewed individually:

> avendesora values times
names: manetherentimes, times, mt
email: nynaeve@gmail.com
passcode: <reveal with 'avendesora value manetherentimes passcode'>
username: nynaeve

Notice the passcode is not shown. You can circumvent this protection by adding is_secret=False to the argument list
of the secret.

The aliases and discovery fields are not shown because they are considered tool fields (see Account Discovery for more
information on discovery). Other tool fields include NAME, default, browser, and default_url. default is the name of
the default field, which is the field you get if you do not request a particular field. Its value defaults to password,
pasphrase, or passcode (as set by default_field setting), but it can be set to any account attribute name or it can be
a script. browser is the default browser to use when opening the account, run the browse command to see a list of
available browsers.

The value of passcode is considered sensitive because it is an instance of PasswordRecipe, which is a subclass of
GeneratedSecret. If you wish to see the passcode, use:

> avendesora value mt
passcode: TZuk8:u7qY8%

This value will be displayed for a minute and is then hidden. If you would like to hide it early, simply type Ctrl-C.

An attribute value can incorporate other attribute values through use of the avendesora.Script class as described
in Scripts. For example, consider an account for your wireless router that contains the following:

5.4. Accounts 29

Avendesora Documentation, Release 1.25

class EmondsFieldInnWifi(Account):
aliases = 'wifi'
ssid = {

'emonds_field_inn_guests': Passphrase(),
'emonds_field_inn_private': Passphrase(),

}
guest = Script('SSID: emonds_field_inn_guests{return}password: {ssid.emonds_field_

→˓inn_guests}')
private = Script('SSID: emonds_field_inn_private{return}password: {ssid.emonds_

→˓field_inn_private}')

The ssid field is a dictionary that contains the SSID and passphrases for each of the wireless networks provided by the
router. This is a natural and compact representation for this information, but accessing it as a user in this form requires
two steps to access the information, one to get the SSID and another to get the passphrase. This issue is addressed by
adding the guest and private attributes. The guest and private attributes are scripts that gives the SSID and interpolate
the passphrase. Now both can easily accessed at once with:

> avendesora value wifi guest
SSID: emonds_field_inn_guests
password: delimit ballcock fibber levitate

Use of Avendesora secrets classes (avendesora.GeneratedSecret or avendesora.ObscuredSecret)
is confined to the top two levels of account attributes, meaning that they can be the value of the top-level attributes, or
the top-level attributes may be arrays or dictionaries that contain objects of these classes, but it can go no further.

It is important to remember that generated secrets use the account name and the field name when generating their
value, so if you change the account name or field name you will change the value of the secret. For this reason is
it important to choose a good account and field names up front and not change them. It should be very specific to
avoid conflicts with similar accounts created later. For example, rather than choosing Gmail as your account name,
you might want to include your username, ex. GmailThomMerrilin. This would allow you to create additional gmail
accounts later without ambiguity. Then just add gmail as an alias to the account you use most often.

Account and field names are case insensitive. So you can use Gmail or gmail. Also, if the account or field names
contains an underscore, you can substitute a dash. So if the account name is Gmail_Thom_Merrilin, you can use
gmail-thom-merrilin instead.

Normally the user need not specify any of the seeds used when generating passwords. However, it is possible to
override the master seed and the account seed. To do so, specify these seeds using the master_seed and account_seed
attributes on the account. This would allow you to change the account file or account name without disturbing the
generated secrets. The values of master_seed and account_seed are not accessible using either the command line or
the API interfaces.

Account attributes that start with an underscore (_) are hidden, meaning that they are not shown by the values or
interactive commands. However, you can access their value by explicitly requesting them using the value command.
Account attributes should not have a trailing underscore. Such attributes create the risk of collision with an attribute
added by Avendesora itself and are inaccessible.

5.5 Secrets

Secrets can either by obscured or generated.

30 Chapter 5. Contents

Avendesora Documentation, Release 1.25

5.5.1 Obscured Secrets

Obscured secrets are secrets that are those that are given to Avendesora to securely hold. The may be things like
account numbers or existing passwords. There are several ways for Avendesora to hold a secret, presented in order of
increasing security.

Hide

This marks a value as being confidential, meaning that it will be protected when shown to the user, but value is not
encoded or encrypted in any way. Rather, it accounts on the protections afforded the accounts file to protect its secret.

Hide(plaintext, secure=True)

plaintext (str):
The secret in plain text.

secure (bool):
Indicates that this secret should only be contained in an
encrypted accounts file. Default is True.

Example:

account = Hide('9646-3440')

Hidden

This obscures but does not encrypt the text. It can protect the secret from observers that get a quick glance of the
encoded text, but if they are able to capture it they can easily decode it.

Hidden(encoded_text, secure=True, encoding=None)

encoded_text (str):
The secret encoded in base64.

secure (bool):
Indicates that this secret should only be contained in an
encrypted accounts file. Default is True.

encoding (str):
The encoding to use for the deciphered text.

Example:

account = Hidden('NTIwNi03ODQ0')

To generate the encoded text, use:

> avendesora conceal

5.5. Secrets 31

Avendesora Documentation, Release 1.25

GPG

The secret is fully encrypted with GPG. Both symmetric encryption and key-based encryption are supported. This can
be used to protect a secret held in an unencrypted account file, in which case encrypting with your key is generally
preferred. It can also be used to further protect a extremely valuable secret, in which case symmetric encryption is
generally used.

GPG(ciphertext, encoding=None)

ciphertext (str):
The secret encrypted and armored by GPG.

encoding (str):
The encoding to use for the deciphered text.

Example:

secret = GPG('''
-----BEGIN PGP MESSAGE-----
Version: GnuPG v2.0.22 (GNU/Linux)

jA0ECQMCwG/vVambFjfX0kkBMfXYyKvAuCbT3IrEuEKD//yuEMCikciteWjrFlYD
ntosdZ4WcPrFrV2VzcIIcEtU7+t1Ay+bWotPX9pgBQcdnSBQwr34PuZi
=4on3
-----END PGP MESSAGE-----

''')

To generate the cipher text, use:

> avendesora conceal -e gpg

The benefit of using symmetric GPG encryption on a secret that is contained in an encrypted account file is that the
passphrase will generally not be found in the GPG agent, in which case someone could not walk up to your computer
while your screen is unlocked and successfully request the secret. However, the GPG agent does retain the password
for a while after you decrypt the secret. If you are concerned about that, you should follow your use of Avendesora
with the following command, which clears the GPG agent:

> killall gpg-agent

Scrypt

The secret is fully encrypted with Scrypt. You personal Avendesora encryption key is used (contained in ~/.con-
fig/avendesora/.key.gpg). As such, these secrets cannot be shared. This encryption method is only available if you
have installed scrypt on your system (pip3 install –user scrypt). Since the Scrypt class only exists if you have installed
scrypt, it is not imported into your accounts file. You would need to import it yourself before using it.

Script(ciphertext, encoding=None)

ciphertext (str):
The secret encrypted by scrypt.

encoding (str):
The encoding to use for the deciphered text.

32 Chapter 5. Contents

Avendesora Documentation, Release 1.25

Example:

from avendesora import Scrypt
...
secret = Scrypt(

'c2NyeXB0ABAAAAAIAAAAASfBZvtYnHvgdts2jrz5RfbYlFYj/EQgiM1IYTnX'
'KHhMkleZceDg0yUaOWa9PzmZueppNIzVdawAOd9eSVgGeZAIh4ulPHPBGAzX'
'GyLKc/vo8Fe24JnLr/RQBlTjM9+r6vbhi6HFUHD11M6Ume8/0UGDkZ0='

)

To generate the cipher text, use:

> avendesora conceal -e scrypt

5.5.2 Generated Secrets

Generated secrets are secrets for which the actual value is arbitrary, but it must be quite unpredictable. Generated
secrets are generally used for passwords and pass phrases, but it can also be used for things like personal information
requested by institutions that they have no need to know. For example, a website might request your birth date to
assure that you are an adult, but then also use it as a piece of identifying information if you ever call and request
support. In this case they do not need your actual birth date, they just need you to give the same date every time you
call in.

Password

Generates an arbitrary password by selecting symbols from the given alphabet at random. The entropy of the generated
password is length*log2(len(alphabet)).

Password(
length=12, alphabet=DISTINGUISHABLE, master=None, version=None,
sep=”, prefix=”, suffix=”

)

length (int):
The number of items to draw from the alphabet when creating the
password. When using the default alphabet, this will be the
number of characters in the password.

alphabet (str):
The reservoir of legal symbols to use when creating the
password. By default the set of easily distinguished
alphanumeric characters are used. Typically you would use the
pre-imported character sets to construct the alphabet. For
example, you might pass:

ALPHANUMERIC + ‘+=_&%#@’
master (str):

Overrides the master seed that is used when generating the
password. Generally, there is one master seed shared by all
accounts contained in an account file. This argument overrides
that behavior and instead explicitly specifies the master seed
for this secret.

5.5. Secrets 33

Avendesora Documentation, Release 1.25

version (str):
An optional seed. Changing this value will change the generated
password.

shift_sort(bool):
If true, the characters in the password will be sorted so that
the characters that require the shift key when typing are placed
last, making it easier to type. Use this option if you expect to
be typing the password by hand.

sep (str):
A string that is placed between each symbol in the generated
password.

prefix (str):
A string added to the front of the generated password.

suffix (str):
A string added to the end of the generated password.

Example:

passcode = Password(10)

Passphrase

Similar to Password in that it generates an arbitrary pass phrase by selecting symbols from the given alphabet at
random, but in this case the default alphabet is a dictionary containing about 10,000 words.

Passphrase(
length=4, dictionary=None, master=None, version=None, sep=’ ‘,
prefix=”, suffix=”

)

length (int):
The number of items to draw from the alphabet when creating the
password. When using the default alphabet, this will be the
number of words in the passphrase.

dictionary (str, [str], or callable):
The reservoir of legal symbols to use when creating the
password. If not give, or if ‘default’ is given, this is a
predefined list of 10,000 words. If given as ‘bip39’ or
‘mnemonic’, this is a predefined list of the 2048 bitcoin BIP-39
seed words. Any other string is treated as a path to a file
that would contain the words. A list is taken as is. Finally, you can
pass a function that returns the list of words, in which case the
calling of the function is deferred until the words are needed, which is
helpful if creating the list is slow.

master (str):
Overrides the master seed that is used when generating the
password. Generally, there is one master seed shared by all

34 Chapter 5. Contents

Avendesora Documentation, Release 1.25

accounts contained in an account file. This argument overrides
that behavior and instead explicitly specifies the master seed
for this secret.

version (str):
An optional seed. Changing this value will change the generated
pass phrase.

sep (str):
A string that is placed between each symbol in the generated
password.

prefix (str):
A string added to the front of the generated password.

suffix (str):
A string added to the end of the generated password.

Example:

passcode = Passphrase()
verbal = Passphrase(2)

PIN

Similar to Password in that it generates an arbitrary PIN by selecting symbols from the given alphabet at random, but
in this case the default alphabet is the set of digits (0-9).

PIN(length=4, alphabet=DIGITS, master=None, version=None)

length (int):
The number of items to draw from the alphabet when creating the
password. When using the default alphabet, this will be the
number of digits in the PIN.

alphabet (str):
The reservoir of legal symbols to use when creating the
password. By default the digits (0-9) are used.

master (str):
Overrides the master seed that is used when generating the
password. Generally, there is one master seed shared by all
accounts contained in an account file. This argument overrides
that behavior and instead explicitly specifies the master seed
for this secret.

version (str):
An optional seed. Changing this value will change the generated
PIN.

Example:

pin = PIN(6)

5.5. Secrets 35

Avendesora Documentation, Release 1.25

Question

Generates an arbitrary answer to a given question. Used for website security questions. When asked one of these
security questions it can be better to use an arbitrary answer. Doing so protects you against people who know your
past well and might be able to answer the questions.

Similar to Passphrase() except a question must be specified when created and it is taken to be the security question.
The question is used rather than the field name when generating the secret.

Question(
question, length=3, dictionary=None, master=None, version=None,
sep=’ ‘, prefix=”, suffix=”, answer=None

)

question (str):
The question to be answered. Be careful. Changing the question
in any way will change the resulting answer.

length (int):
The number of items to draw from the alphabet when creating the
password. When using the default alphabet, this will be the
number of words in the answer.

dictionary (str, [str], or callable):
The reservoir of legal symbols to use when creating the
password. If not give, or if ‘default’ is given, this is a
predefined list of 10,000 words. If given as ‘bip39’ or
‘mnemonic’, this is a predefined list of the 2048 bitcoin BIP-39
seed words. Any other string is treated as a path to a file
that would contain the words. A list is taken as is. Finally, you can
pass a function that returns the list of words, in which case the
calling of the function is deferred until the words are needed, which is
helpful if creating the list is slow.

master (str):
Overrides the master seed that is used when generating the
password. Generally, there is one master seed shared by all
accounts contained in an account file. This argument overrides
that behavior and instead explicitly specifies the master seed
for this secret.

version (str):
An optional seed. Changing this value will change the generated
answer.

sep (str):
A string that is placed between each symbol in the generated
password.

prefix (str):
A string added to the front of the generated password.

suffix (str):
A string added to the end of the generated password.

answer:

36 Chapter 5. Contents

Avendesora Documentation, Release 1.25

The answer. If provided, this would override the generated
answer. May be a string, or it may be an Obscured object.

Example:

questions = [
Question('Favorite foreign city'),
Question('Favorite breed of dog'),

]

PasswordRecipe

Generates passwords that can conform to the restrictive requirements imposed by websites. Allows you to specify the
length of your password, and how many characters should be of each type of character using a recipe. The recipe
takes the form of a string that gives the total number of characters that should be generated, and then the number of
characters that should be taken from particular character sets. The available character sets are:

l - lower case letters (a-z)
u - upper case letters (A-Z)
d - digits (0-9)
s - punctuation symbols
c - explicitly given set of characters

For example, ‘12 2u 2d 2s’ is a recipe that would generate a 12-character password where two characters would be
chosen from the upper case letters, two would be digits, two would be punctuation symbols, and the rest would be
alphanumeric characters. It might generate something like: @m7Aqj=XBAs7

Using ‘12 2u 2d 2c!@#$%^&*’ is similar, except the punctuation symbols are constrained to be taken from the given
set that includes !@#$%^&*. It might generate something like: YO8K^68J9oC!

PasswordRecipe(
recipe, def_alphabet=ALPHANUMERIC, master=None, version=None,

)

recipe (str):
A string that describes how the password should be constructed.

def_alphabet (list of strs):
The alphabet to use when filling up the password after all the
constraints are satisfied.

master (str):
Overrides the master seed that is used when generating the
password. Generally, there is one master seed shared by all
accounts contained in an account file. This argument overrides
that behavior and instead explicitly specifies the master seed
for this secret.

version (str):
An optional seed. Changing this value will change the generated
answer.

shift_sort(bool):
If true, the characters in the password will be sorted so that

5.5. Secrets 37

mailto:2c!@#\protect \T1\textdollar %\T1\textasciicircum {}&*
mailto:!@#\protect \T1\textdollar %\T1\textasciicircum {}&*

Avendesora Documentation, Release 1.25

the characters that require the shift key when typing are placed
last, making it easier to type. Use this option if you expect to
be typing the password by hand.

Example:

passcode = PasswordRecipe(‘12 2u 2d 2c!@#$%^&*’)

BirthDate

Generates an arbitrary birth date for someone in a specified age range.

BirthDate(
year, min_age=18, max_age=65, fmt=’YYYY-MM-DD’,
master=None, version=None,

)

year (int):
The year the age range was established.

min_age (int):
The lower bound of the age range.

max_age (int):
The upper bound of the age range.

fmt (str):
Specifies the way the date is formatted. Consider an example
date of 6 July 1969. YY and YYYY are replaced by the year (69 or
1969). M, MM, MMM, and MMMM are replaced by the month (7, 07,
Jul, or July). D and DD are replaced by the day (6 or 06).

master (str):
Overrides the master seed that is used when generating the
password. Generally, there is one master seed shared by all
accounts contained in an account file. This argument overrides
that behavior and instead explicitly specifies the master seed
for this secret.

version (str):
An optional seed. Changing this value will change the generated
answer.

Example:

birthdate = BirthDate(2015, 21, 55)

OTP

Generates a secret that changes once per minute that generally is used as a second factor when authenticating. It can
act as a replacement for, and is fully compatible with, Google Authenticator. You would provide the text version of
the shared secret (the backup code) that is presented to you when first configuring your second factor authentication.

38 Chapter 5. Contents

mailto:2c!@#\protect \T1\textdollar %\T1\textasciicircum {}&*

Avendesora Documentation, Release 1.25

OTP(shared_secret, interval=30, digits=6)

shared_secret (base32 string):
The shared secret, it will be provided by the account provider.

interval (int):
Update interval in seconds.

max_age (int):
The number of digits to output.

Example:

otp = OTP('JBSWY3DPEHPK3PXP')

Changing a Generated Secret

It is sometimes necessary to change a generated secret. Perhaps because it was inadvertently exposed, or perhaps
because the account provider requires you change your secret periodically. To do so, you would simply add the
version argument to the secret and then update its value. version may be a number or a string. You should choose a
way of versioning that is simple, easy to guess and would not repeat. For example, if you expect that updating the
version would be extremely rare, you can simply number them sequentially. Or, if you you need to update them every
month or every quarter, you can name them after the month or quarter (ex: jan19 or 19q1).

Examples:

passcode = PasswordRecipe('16 1d', version=2)
passcode = PasswordRecipe('16 1d', version='19q2')

5.6 Advanced Usage

5.6.1 Avoiding Phishing Attacks

Phishing is a very common method used on the web to get people to unknowingly divulge sensitive information such
as account credentials. It is generally accomplished by sending misleading URLs in email or placing them on websites.
When you visit these URLs you are taken to a site that looks identical to the site you were expecting to go to in the
hope that you are tricked into giving up your account credentials. It used to be that if you carefully inspected the URL
you could spot deception, but even that is no longer true.

Avendesora helps you avoid phishing attacks in two ways. First, you should never go to one of your secure sites by
clicking on a link. Instead, you should use Avendesora’s browse command:

avendesora browse chase

In this way you use the URL stored in Avendesora rather than trusting a URL link provided by a third party. Sec-
ond, you should auto-enter the account credentials using Avendesora’s account discovery based on avendesora.
RecognizeURL (be sure to use avendesora.RecognizeURL for websites rather than avendesora.
RecognizeTitle when configuring account discovery, avendesora.RecognizeURL is not fooled by phish-
ing sites).

5.6. Advanced Usage 39

Avendesora Documentation, Release 1.25

5.6.2 Account Discovery

If you do not give an account to ‘avendesora value’, Avendesora tries to determine the account by simply asking each
account if it is suitable. An account can look at the window title, the user name, the host name, the working directory,
and the environment variables to determine if it is suitable. If so, it nominates itself. If there is only one account
nominated, that account is used. If there are multiple nominees, then a small window pops up allowing you to choose
which account you wish to use.

To configure an account to trigger when a particular window title is seen, use:

discovery = RecognizeTitle(
'Chase Online *',
script='{username}{tab}{passcode}{return}'

)

The title can either be a glob string or a function. For glob strings, ‘*’ matches any combination of characters and ‘?’
matches any single character (see fnmatch for a complete description of the glob syntax). In this way, the entire title
must be matched. For functions, the argument is the title and the return value must be truthy if the title matched and
falsey otherwise. The script describes what Avendesora should output when there is a match. In this case it outputs
the username field, then a tab, then the passcode field, then a return (see Scripts).

Matching window titles can be fragile, especially for websites because the titles can vary quite a bit across the site and
over time. To accommodate this variation, you can give multiple glob patterns:

discovery = RecognizeTitle(
'CHASE Bank*',
'Chase Online*',
script='{username}{tab}{passcode}{return}'

)

However, in general, it is better to match the URL. This can be done in Firefox and Chrome by adding extensions that
place the URL in the window title and then using avendesora.RecognizeURL to do the recognition.

If you use Firefox, you should install the Add URL to Window Title extension by Eric. It is a plugin that makes
discovery easier and more robust by adding the URL to the title. For Chrome the appropriate plugin is is URL in
Title by Guillaume Ryder. It is recommended that you install the appropriate one into your browser. For Add URL To
Window Title, set the following options:

show full URL = yes
separator string = '-'
show field attributes = no

For URL in Title, set:

tab title format = '{title} - {protocol}://{hostname}{port}/{path}'

If you use qutebrowser as your browser, you should add the following to your ~/.config/qutebrowser/config.py file:

c.window.title_format = '{title} - {current_url} - qutebrowser'

avendesora.RecognizeURL is designed to recognize such titles. Once you have deployed the appropriate plu-
gin, you can use:

discovery = RecognizeURL(
'https://chaseonline.chase.com',
'https://www.chase.com',
script='{username}{tab}{passcode}{return}'

)

40 Chapter 5. Contents

https://docs.python.org/3.6/library/fnmatch.html
https://addons.mozilla.org/en-US/firefox/addon/add-url-to-window-title
https://chrome.google.com/webstore/detail/url-in-title/ignpacbgnbnkaiooknalneoeladjnfgb
https://chrome.google.com/webstore/detail/url-in-title/ignpacbgnbnkaiooknalneoeladjnfgb
https://qutebrowser.org

Avendesora Documentation, Release 1.25

When giving the URL, anything specified must match and globbing is not supported. If you give a partial path, by
default Avendesora matches up to what you have given, but you can require an exact match of the entire path by specify-
ing exact_path=True to avendesora.RecognizeURL. If you do not give the protocol, the default_protocol
(https) is assumed.

In general you should use avendesora.RecognizeURL rather than avendesora.RecognizeTitle for
websites if you can. Doing so helps protect you from phishing attacks by carefully examining the URL.

When account discovery fails it can be difficult to determine what is going wrong. When this occurs, you should first
examine the log file:

> avendesora log

It should show you the window title and the recognized title components. You should first assure the title is as expected.
If Add URL to Window Title or URL in Title generated the title, then the various title components should also be shown.
Then run Avendesora as follows:

> avendesora value --verbose --title '<title>'

The title should be copied from the log file. The verbose option causes the result of each test to be included in the
log file, so you can determine which recognizer is failing to trigger. You can either specify the verbose option on the
command line or in the config file.

Recognizers

The following recognizers are available:

RecognizeAll(<recognizer>..., [script=<script>])
RecognizeAny(<recognizer>..., [script=<script>])
RecognizeTitle(<title>..., [script=<script>])
RecognizeURL(<title>..., [script=<script>, [name=<name>,]] [exact_path=<bool>])
RecognizeHost(<host>..., [script=<script>])
RecognizeUser(<user>..., [script=<script>])
RecognizeCWD(<cwd>..., [script=<script>])
RecognizeEnvVar(<name>, <value>, [script=<script>])
RecognizeNetwork(<mac>..., [script=<script>])
RecognizeFile(<path>, [<contents>,] [<ttl>,] [script=<script>])

avendesora.RecognizeAll and avendesora.RecognizeAny can be used to combine several recognizers.
For example:

discovery = RecognizeAll(
RecognizeTitle('sudo *'),
RecognizeUser('hhyde'),
script='{passcode}{return}'

)

If the recognizers are given in an array, all are tried, and each that match are offered. For example:

discovery = [
RecognizeURL(

'http://www.querty-forum.org',
script='admin{tab}{passcode}{return}',
name='admin',

),
RecognizeURL(

(continues on next page)

5.6. Advanced Usage 41

Avendesora Documentation, Release 1.25

(continued from previous page)

'http://www.querty-forum.org',
script='thecaretaker{tab}{passcode}{return}',
name='thecaretaker',

),
]

In this case, both recognizers recognize the same URL, thus they are both be offered for this site. But each has a
different script. The name allows the user to distinguish the available choices.

If there is a need to distinguish URLs where is one is a substring of another, you can use exact_path:

discovery = [
RecognizeURL(

'https://mybank.com/Authentication',
script='{username}{return}',
exact_path=True,

),
RecognizeURL(

'https://mybank.com/Authentication/Password',
script='{passcode}{return}',
exact_path=True,

),
]

The URL may contain the # character. This character separates the ‘fragment’ from the rest of the URL. You can
distinguish two otherwise indistinguishable URLs by their fragment. For example, BitWarden requests the username
and password on a page with a URL of https://vault.bitwarden.com/#/ and it request only the password on a page with
a URL of https://vault.bitwarden.com/#/lock. Normally the fragment (the part of the URL that follows the #) is ignored
when determining whether a URL matches, however you can explicitly specify that it should be included as follows:

discovery = [
RecognizeURL(

'https://vault.bitwarden.com',
script='{email}{tab}{passcode}{return}',
fragment='/',

),
RecognizeURL(

'https://vault.bitwarden.com',
script='{passcode}{return}',
fragment='/lock',

),
]

avendesora.RecognizeFile checks to determine whether a particular file has been created recently. This
can be use in scripts to force secret recognition. For example, the titles used by Firefox and Thunderbird when
collecting the master password is either non-existent or undistinguished. These programs also produce a large amount
of uninteresting chatter on their output, so it is common to write a shell script to run the program that redirects their
output to /dev/null. Such a script can be modified to essentially notify Avendesora that a particular password is desired.
For example, for Thunderbird:

#!/bin/sh
touch /tmp/thunderbird-1024
/usr/bin/thunderbird > /dev/null

Here I have adding my user id (uid=1024) to make the filename unique so I am less likely to clash with other users.
Alternately, I could have simply placed the file in my home directory.

42 Chapter 5. Contents

https://vault.bitwarden.com/#/
https://vault.bitwarden.com/#/lock

Avendesora Documentation, Release 1.25

Then, Avendesora will recognize Thunderbird if you add the following discovery field to your Thunderbird account:

class Thunderbird(Account):
desc = 'Master password for Thunderbird'
passcode = Password()
discovery = RecognizeFile(

'/tmp/thunderbird-1024', wait=60, script='{passcode}{return}'
)

If the specified file exists and has been updated within the last 60 seconds, then secret is recognized. You can specify
the amount of time you can wait in between running the script and running Avendesora with the ‘wait’ argument,
which takes a number of seconds. It defaults to 60.

Using this particular approach, every secret needs its own file. But you can share a file by specifying the file contents.
Then the script could be rewritten as:

#!/bin/sh
echo thunderbird > ~/.avendesora-password-request
/usr/bin/thunderbird > /dev/null

Then you would add something like the following to your Thunderbird account entry:

class Thunderbird(Account):
desc = 'Master password for Thunderbird'
passcode = Password()
discovery = RecognizeFile(

'~/.avendesora-password-request',
contents='thunderbird',
script='{passcode}{return}'

)

Terminal Windows

It is generally possible to configure you terminal emulator to put the currently running command in the window title,
which makes it available to Avendesora’s account discovery.

For this to work you need a terminal emulator that supports xterm’s special characters for setting the window title,
which is quite common. In this case, sending a string to the window that starts with esc-]0; and ends with ctrl-g
will set the window title. How you generate these codes depends on which shell you use.

Tcsh

Tcsh runs postcmd after it has read the command but before it is run. You can change postcmd by creating an alias of
the same name. Here is a version that sets the window title to the currently running command:

alias postcmd 'echo -n "\033]2;${USER}@${HOST:r:r}: \!#\007"'

${USER} is replaced by the username and ${HOST:r:r} is replaced with the hostname with two extensions re-
moved. The \!# is replaced by the currently running command.

Running this alias command causes the window title to be set as a command starts. Still needed is to update the
window title after the command completes. This is realized using the precmd command. Tcsh calls this command
before generating a prompt. Here is a version that sets the window title to contain the hostname and the current
working directory:

5.6. Advanced Usage 43

Avendesora Documentation, Release 1.25

alias precmd 'echo -n "^[[]2;${USER}@${HOST:r:r}:${cwd}^G"'

Place both of these aliases in your ~/.cshrc file to configure your shell to keep your window title up-to-date. They
should be placed at the end of the file and should only be executed for interactive shells:

if ($?prompt) then
alias precmd 'echo -n "^[]2;${USER}@${HOST:r:r}:${cwd}^G"'
alias postcmd 'echo -n "^[]2;${USER}@${HOST:r:r}: \!#^G"'

endif

With these aliases in place, you can add the following to the account that contains your login password:

discovery = RecognizeTitle(
'*@*: sudo *',
script='{passcode}{return}'

)

With this, you can run a sudo command in your shell, and trigger Avendesora when sudo requests your password.
Avendesora will recognize the title and enter your login password. By placing the username and the host name in the
window title along with the command you give Avendesora the ability to tailor its response accordingly. For example,
you match a specific user and host names with the following:

discovery = RecognizeTitle(
'elayne@andor: sudo *',
script='{passcode}{return}'

)

Bash

The following code added to your ~/.bashrc file will accomplish pretty much the same thing if you use Bash as your
shell:

HOST=$(echo "$HOSTNAME" | cut -f 1 -d '.')
trap 'printf "\033]0;${USER}@${HOST}: %s\007" "${BASH_COMMAND//[^[:print:]]/}"' DEBUG

5.6.3 Security Questions

Security questions are form of security theater imposed upon you by many websites. The claim is that these questions
increase the security of your account. In fact they often do the opposite by creating additional avenues of access to
your account. Their real purpose is to allow you to regain access to your account in case you lose your password.
If you are careful, this is not needed (you do back up your Avendesora accounts, right?). In this case it is better to
randomly generate your answers.

Security questions are handled by adding something like the following to your account:

questions = [
Question('oldest aunt?'),
Question('title of first job?'),
Question('oldest uncle?'),
Question('savings goal?'),
Question('childhood vacation spot?'),

]

44 Chapter 5. Contents

Avendesora Documentation, Release 1.25

The string identifying the question does not need to contain the question verbatim, a abbreviated version is sufficient
as long as it allows you to distinguish the question. However, once set, you should not change the question in the
slightest; doing so changes the generated answer.

The questions are given as an array, and so are accessed with an index that starts at 0. Thus, to get the answer to who
is your ‘oldest aunt’, you would use:

> avendesora value <accountname> 0
questions.0 (oldest aunt): ampere reimburse duster

You can get a list of your questions and then select which one you want answered using the questions command.
Specifically, if Citibank asks for the name of your oldest uncle you can use the following to find the answer:

> avendesora questions citi
0: oldest aunt?
1: title of first job?
2: oldest uncle?
3: savings goal?
4: childhood vacation spot?
Which question? 2
questions (oldest uncle?): discomfit correct contact

By default, Avendesora generates a response that consists of 3 random words. This makes it easy to read to a person
over the phone if asked to confirm your identity. Occasionally you will not be able to enter your own answer, but must
choose one that is offered to you. In this case, you can specify the answer as part of the question:

questions = [
Question('favorite fruit?', answer='grapes'),
Question('first major city visited?', answer='paris'),
Question('favorite subject?', answer='history'),

]

When giving the answers you may want to conceal them to protect them from casual observation.

5.6.4 Opening Accounts in your Browser

Avendesora provides the browse command to allow you to easily open the website for your account in your browser.
To do so, it needs two things: a URL and a browser.

Selecting the URL

Avendesora looks for URLs in the urls and discovery account attributes, with urls being preferred if both exist. urls
may either be a string, a list, or a dictionary. If it is a string, it is split at white spaces to make it a list. If urls is a list, the
URLs are considered unnamed and the first one given is used. If it a dictionary, the URLs are named. When named,
you may specify the URL you wish to use by specifying the name to the browse command. For example, consider a
urls attribute that looks like this:

class Dragon(Account):
username = 'rand'
passcode = Passphrase()
urls = dict(

email = 'https://webmail.dragon.com',
vpn = 'https://vpn.dragon.com',

)
default_url = 'email'

5.6. Advanced Usage 45

Avendesora Documentation, Release 1.25

You would access vpn with:

avendesora browse dragon vpn

By specifying default_url you indicate which URL is desired when you do not explicitly specify which you want on
the browse command. In this way, you can access your email with either of the following:

avendesora browse dragon email
avendesora browse dragon

If urls is not given, Avendesora looks for URLs in avendesora.RecognizeURL members in the discovery at-
tribute. If the name argument is provided to avendesora.RecognizeURL, it is treated as a named URL, otherwise
it is treated as an unnamed URL.

If named URLs are found in both urls and discovery they are all available to browse command, with those given in
urls being preferred when the same name is found in both attributes.

Selecting the Browser

You can configure browsers for use by Avendesora using the browsers setting. By default, browsers contains the
following:

browsers = dict(
f = 'firefox -new-tab {url}',
fp = 'firefox -private-window {url}',
c = 'google-chrome {url}',
ci = 'google-chrome --incognito {url}',
q = 'qutebrowser {url}',
t = 'torbrowser {url}',
x = 'xdg-open {url}',

)

Each entry pairs a key with a command. The command will be run with {url} replaced by the selected URL when
the browser is selected. You can choose which browser is used by specifying the –browser command line option on
the browse command, by adding the browser attribute to the account, or by specifying the default_browser setting in
the config file. If more than one is specified, the command line option dominates over the account attribute, which
dominates over the setting. By default, the default browser is x, which uses the default browser for your account.

5.6.5 Interactive Queries

Occasionally you may need several account values or you may be talking to an account services representative on
the phone and may want to quickly respond to their questions such as ‘what is your account number?’ or ‘what is
your verbal password?’. In these cases using the value command is cumbersome. Avendesora provides two interactive
commands that can help out.

The questions command allows you to quickly see the available security questions and then answer them on demand.
For example:

> avendesora questions bank
0: Mothers profession?
1: Last name of high school best friend?
2: Name of first pet?
Which question? 1
questions.1 (Last name of high school best friend?): dirge revel oboist
Which question?

46 Chapter 5. Contents

Avendesora Documentation, Release 1.25

You are presented the available questions and asked to choose one. In the example, 1 is entered and that question is
answered by Avendesora. You can then request the answer to another question. This continues until you give an empty
selection.

As a short cut, you can use q as the name of the command rather than questions.

By default the default_vector_field is queried, which is generally questions, however you can request any composite
field:

> avendesora q bank accounts
checking:
savings:
credit:
Which question? checking
accounts.checking: 7610-40-9891
Which question?

The questions command is useful when confronting one or more unexpected challenge questions, but it only han-
dles one composite field at a time. More convenient when chatting on the phone to an account representative is the
interactive or i command. This command allows you to interactively query the value of any account field:

> avendesora interactive bank
which field? accounts.checking
accounts.checking: 7610-40-9891
which field?

An empty selection or <Ctrl-d> terminates the command. The command supports name completion using the <Tab>
key. Simply type the first few characters of the name and type <Tab> to complete the name. Type <Tab><Tab> to get
a list of available completions:

> avendesora i bank
which field? acc<Tab>.c<Tab>
accounts.checking: 7610-40-9891
which field?

If the value is a secret, it is displayed for a minute and then erased. To erase it early, type <Ctrl-c>.

5.6.6 One-Time Passwords

One-time passwords are often used as a second factor to provide an additional level of protection. They are especially
useful when you are concerned about keyloggers.

Avendesora supports time-based one-time passwords (TOTP) that are fully compatible with, and can act as an alterna-
tive to or a replacement for, the Google Authenticator, Authy, or Symantec VIP apps.

Google Authenticator

When first enabling one-time passwords with Google Authenticator you are generally presented with a QR code. Also
included is a string of characters that are often referred to as the backup code. You would provide this string of
characters to the OTP class to configure an account for a one-time password. For example, here is an account that
requests your username and password on one page, and your one time password on another:

class AndorSavings(Account):
email = 'lini.eltring@yahoo.com'
passcode = PasswordRecipe('16 2u 2d 2s')

(continues on next page)

5.6. Advanced Usage 47

Avendesora Documentation, Release 1.25

(continued from previous page)

otp = OTP('JBSWY3DPEHPK3PXP')
credentials = 'email passcode otp'
urls = 'https://www.andorsavings.com/login.html'
discovery = [

RecognizeURL(
'https://www.andorsavings.com/login.html',
script='{email}{tab}{passcode}{return}',
name='email & password',

),
RecognizeURL(

'https://www.andorsavings.com/googleVerify.html',
script='{otp}{return}',
name='authentication token',

),
]

Or, if you are lucky enough that they allow you to enter the OTP on the same page as your username and password,
you might have:

class AndorSavings(Account):
email = 'lini.eltring@yahoo.com'
passcode = PasswordRecipe('16 2u 2d 2s')
otp = OTP('JBSWY3DPEHPK3PXP')
credentials = 'email passcode otp'
discovery = RecognizeURL(

'https://www.andorsavings.com/login.html',
script='{email}{tab}{passcode}{tab}{otp}{return}',
name='email, passcode and authentication token',

)

In this case, you only need one recognizer and specifying urls is no longer necessary because you only have one URL
in the account.

This account adds a one time password as otp. It adds a credentials field that adds the one-time password to the output
of the credentials command. It also adds a URL recognizer to allow semiautomatic entry of the one-time password to
the browser.

Finally, some sites want you to concatenate the OTP to the end of your password. You can do that with:

script='{email}{tab}{passcode}{otp}{return}',

Authy

It is easy to mimic Google Authenticator. Mimicking Authy is more difficult. To do so, follow these instructions.
Basically, the idea is to install the Authy Chrome app, start it, open the desired account, then back in Chrome open
chrome://extensions, select Developer Mode, then click on ‘Inspect views: main.html’, search for totp function, set
a break point in that function and wait until it trips, then copy the value of the e argument (a 32 digit hexadecimal
number) to hex_seed in the code below:

#!/usr/bin/env python3

from base64 import b32encode, b32decode
from pyotp import TOTP
from time import sleep

(continues on next page)

48 Chapter 5. Contents

https://randomoracle.wordpress.com/2017/02/15/extracting-otp-seeds-from-authy

Avendesora Documentation, Release 1.25

(continued from previous page)

def int_to_bytes(x):
return x.to_bytes((x.bit_length() + 7) // 8, 'big')

hex_seed = 0xNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
seed = b32encode(int_to_bytes(hex_seed))
print('SEED: %s' % seed)

otp = TOTP(seed, interval=10, digits=7)
print(otp.now())
sleep(10)
print(otp.now())
sleep(10)
print(otp.now())
sleep(10)
print(otp.now())
sleep(10)
print(otp.now())

Substitute your number for NNN. . . NN (hex_seed should be 0x followed by the value of e). Then run the script to
display the seed or shared secret. It will also show five codes, one every 10 seconds. Every other code should match
the value produced by the Chrome app. Be aware that every Authy app has its own seed, so the sequence that Chrome
generates will be different from the sequence generated by your phone app or even a different Chrome app, and that is
true even if they are generating tokens for the same account.

Once you are convinced that your seed is correct, add something like the following to your account to generate the
one-time password:

otp = OTP('UM0HJVLT4HVWJQJC47Q8YXX4TU======', interval=10, digits=7)

The string passed to OTP should be the value of SEED as output by the above script. The interval and digits are
specific to Authy.

Be aware that training Avendesora to output your Authy codes does not eliminate your need for the Authy application.
Occasionally, an authorization request will be pushed to your Authy application to allow you to approve a transaction.
Avendesora cannot provide this particular service. In the Authy parlance, Avendesora supports Authy Tokens, but not
Authy Requests.

Symantec VIP

You can use vipaccess to generate OTP credentials for Avendesora that are compatible with the Symantec VIP authen-
ticator application. Download and install vipaccess using:

git clone https://github.com/dlenski/python-vipaccess.git
cd python-vipaccess
pip3 install --user .

Once installed, you generate the credentials using:

vipaccess provision

It produces an ID, a secret, and an expiration date and places them into ~/.vipaccess. The ID and secret are like a
public and private key pair. You keep secret private and you give the ID to the site when registering your authenticator.
With Avendesora you give the secret as the argument to avendesora.OTP.

As an example, consider configuring Avendesora to provide two-factor authentication for a Schwab account. Assume
that you have run vipaccess and it generated the following ~/.vipaccess file:

5.6. Advanced Usage 49

https://github.com/dlenski/python-vipaccess

Avendesora Documentation, Release 1.25

version 1
secret AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
id VSST12345678
expiry 2019-01-15T12:00:00.000Z

You would configure Avendesora to generate one-time passwords by adding the following to the desired account:

otp = OTP('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
otp_expires = '2019-01-15T12:00:00.000Z'

The addition of otp_expires is not necessary, it just a way of keeping a useful piece of information in a convenient
place. It is not necessary to save the ID.

You would register your authenticator with Schwab by giving them the ID, in this case VSST12345678, and the current
one-time password, which you get with:

avendesora schwab otp

Once registered, Schwab expects you to add the one-time password to the end of your passcode when logging in. You
can implement this in account discovery using:

discovery = RecognizeURL(
'https://client.schwab.com',
script='{username}{tab}{passcode}{otp}{return}',

)

You should now be able to login using a single keystroke.

Once you have registered and Avendesora is able to authenticate your access to Schwab, you can delete the ~/.vipaccess
file.

You can add the one-time password to the credentials command in two alternate ways. In the first, you simply list out
the one-time password along with the username and passcode:

credentials = 'username otp passcode'

Alternatively, you have Avendesora show the one-time password as part of the passcode, just as Schwab wants it. To
accomplish this a new field, ephemeral_passcode, is created that combines the passcode and the one-time password.
This field is replaces passcode in the credentials field:

ephemeral_passcode = Script('{passcode}{otp}')
credentials = 'username ephemeral_passcode'

In this example, the otp, otp_expires, and ephemeral_passcode field names are arbitrary. You are free to choose names
more to your liking.

A variation on this process is used when registering Avendesora’s one-time password feature as a second-factor with
ETrade. Symantec VIP has several types of tokens. By default, vipaccess generates VSST (desktop) tokens, but Etrade
requires a VSMT (mobile) token. To generate a mobile token, use:

vipaccess provision -t VSMT

Except for this one detail, the rest of the process is the same as described for Schwab.

5.6.7 Scripts

Scripts are strings that contain embedded account attributes. For example:

50 Chapter 5. Contents

Avendesora Documentation, Release 1.25

'username: {username}, password: {passcode}'

When processed by Avendesora the attributes are replaced by their value from the chosen account. For example, this
script might be rendered as:

username: rand_alThor, password: R7ibHyPjWtG2

You can specify a script directly to the value command. You can specify them as account attributes (in this case then
need to be embedded in avendesora.Script). Or you can specify them to account discovery recognizers.

Besides account attributes, there are also some special codes that can be inserted in the script surrounded by braces:

Code Meaning
tab insert a tab character
return insert a carriage return character
sleep N pause for N seconds
rate N set the autotype rate to one character per N milliseconds.
paste field paste the value of the field using the primary selection
remind msg show the msg as a notification

tab and return are suitable for all scripts, but sleep, rate and remind are only suitable for account discovery scripts.

Scripts are useful if you need to combine an account value with other text, if you need to combine more than one
account value, or if you want quick access to something that would otherwise need an additional key.

For example, consider an account for your wireless router, which might hold several passwords, one for administrative
access and one or more for the network passwords. Such an account might look like:

class WiFi(Account):
username = 'admin'
passcode = Passphrase()
networks = ["Occam's Router", "Occam's Router (guest)"]
network_passwords = [Passphrase(), Passphrase()]
privileged = Script('''

SSID: {networks.0}
password: {network_passwords.0}

''')
guest = Script('''

SSID: {networks.1}
password: {network_passwords.1}

''')
credentials = 'privileged guest username passcode'

Notice that privileged and guest were specified as scripts. Now the credentials for the privileged network are accessed
with:

> avendesora value wifi privileged
SSID: Occam's Router
password: overdraw cactus devotion saying

You can also give a script rather than a field on the command line when running the value command:

> avendesora value scc '{username}: {passcode}'
rand_alThor: R7ibHyPjWtG2

For example, a place where this is useful is when specifying a username and password to curl:

5.6. Advanced Usage 51

Avendesora Documentation, Release 1.25

> curl --user `avendesora value -s apache '{username}:{passcode}'` ...

It is also possible to specify a script for the value of the default attribute. This attribute allows you to specify the default
field (which attribute name and key to use if one is not given on the command line). It also accepts a script rather than
a field, but in this case it should be a simple string and not an instance of the avendesora.Script class. If you
passed it as a avendesora.Script, it would be expanded before being interpreted as a field name, and so would
result in a ‘not found’ error.

class SCC(Account):
aliases = 'scc'
username = 'rand_alThor'
password = PasswordRecipe('12 2u 2d 2s')
default = 'username: {username}, password: {password}'

You can access the script by simply not providing a field:

> avendesora value scc
username: rand_alThor, password: *m7Aqj=XBAs7

Finally, you pass a script to the account discovery recognizers. They specify the action that should be taken when
a particular recognizer triggers. These scripts would also be simple strings and not instances of the avendesora.
Script class. For example, this recognizer could be used to recognize Gmail:

discovery = [
RecognizeURL(

'https://accounts.google.com/ServiceLogin',
'https://accounts.google.com/signin/v2/identifier',
script='{username}{return}{sleep 2}{passcode}{return}'
name='username and passcode',

),
RecognizeURL(

'https://accounts.google.com/signin/v2/sl/pwd',
script='{passcode}{return}',
name='passcode',

),
RecognizeURL(

'https://accounts.google.com/signin/challenge',
script='{questions.0}{return}'
name='challenge',

),
]

Besides the account attributes, you can use several other special attributes including: {tab}, {return}, {sleep <N>},
{rate <N>}, *{paste <field>}, and {remind <message>}. {tab} is replaced by a tab character, {return} is replaced by a
carriage return character, {sleep <N>} causes a pause of N seconds, {rate <N>} sets the autotype rate to one keystroke
every *N milliseconds, {paste <field>} pastes the value of the given field using the middle mouse button, and {remind
<message>} displays message as a notification. The sleep and rate functions are only active when auto-typing in
account discovery.

The sleep function is useful with two-page authentication sites as it gives the website time to load the second page.

The rate function is useful with fields that have javascript helpers. The javascript helpers often limit the rate at which
you can type characters. The rate function allows you to slow down the autotyping to the point where you avoid the
problems that stem from exceeding the limit.

The paste is useful when trying to overcome JavaScript issues. Many websites use JavaScript to interpret the characters
as you type them. This can be slow and may not be able to keep up with Avendesora’s auto-typing. There are various
ways of overcoming this problem. You can use the rate function, or you can follow the field with the sleep function,

52 Chapter 5. Contents

Avendesora Documentation, Release 1.25

or you can use the paste function to enter the value in one operation. Using paste can be more reliable than rate and
sleep, which both count on timing that can vary with your internet connection. The paste occurs where the mouse is
placed before the script is triggered, so it only really makes sense to use paste once in a script. If you are not pasting
the first value in your script, then you should click on the first value to select it, then move the mouse without clicking
so that hovers over the field to be pasted to, then trigger the script. A typical example script that employs paste is:

"{paste account}{tab}{passcode}{return}"

The remind function is used to remind you of next steps. For example, the following uses remind to instruct you to
use your YubiKey to provide the second factor that completes the login process:

RecognizeURL(
'https://www.kraken.com/en-us/sign-in',
'https://www.kraken.com/sign-in',
script='{username}{tab}{passcode}{tab}{remind Use Yubikey as 2nd factor.}',
name = 'login',

)

5.6.8 Files as Secrets

It is possible to place the contents of entire files in Avendesora, and then when you request an account field that holds
the file, that file is written to the filesystem.

To see how this would work, consider your SSH private keys. You would first encode each of the keys using the
conceal command:

> avendesora conceal --file ~/ssh/id_rsa
Hidden(

'LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnph'
...
'RCBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0K'

)
...

You would then create an Avendesora account for your SSH keys and copy the encoded contents in to the arguments
of avendesora.WriteFile along with the path to the file and the desired file mode:

class SSH_Keys(Account):
desc = 'ssh private keys'
aliases = 'sshkeys'
all = Script('\n {id_rsa}\n {github}')
id_rsa = WriteFile(

path = '~/.ssh/id_rsa',
contents = Hidden(

'LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnph'
...
'RCBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0K'

),
mode = 0o0600

)
github = WriteFile(

path = '~/.ssh/github',
contents = Hidden(

'LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnph'
...
'RXdIK1BWSTFmUUFBQUtpcDZsS1VxZXBTCmxB=='

(continues on next page)

5.6. Advanced Usage 53

Avendesora Documentation, Release 1.25

(continued from previous page)

),
mode = 0o0600

)

Then, when you run Avendesora the contents are decoded and written to the specified file:

> avendesora sshkeys id_rsa
id-rsa: Contents written to ~/.ssh/id_rsa.

Using avendesora.Script allows you to write multiple files at once:

> avendesora sshkeys all
all:

Contents written to ~/.ssh/id_ed25519.
Contents written to ~/.ssh/id_rsa.

5.6.9 Stealth Accounts

Normally Avendesora uses information from an account that is contained in an accounts file to generate the secrets for
that account. In some cases, the presence of the account itself, even though it is contained within an encrypted file can
be problematic. The mere presence of an encrypted file may result in you being compelled to open it. For the most
damaging secrets, it is best if there is no evidence that the secret exists at all. This is the purpose of stealth accounts
(misdirection is an alternative to stealth accounts).

The stealth accounts are predefined and have names that are descriptive of the form of the secret they generate, for
example word4 generates a 4-word pass phrase (also referred as the xkcd pattern):

> avendesora value word4
account: my_secret_account
gulch sleep scone halibut

The predefined accounts are kept in ~/.config/avendesora/stealth_accounts. You are free to add new accounts or modify
the existing accounts.

Stealth accounts are subclasses of the avendesora.StealthAccount class. These accounts differ from normal
accounts in that they do not contribute the account name to the secrets generators for use as a seed. Instead, the user is
requested to provide the account name every time the secret is generated. The secret depends strongly on this account
name, so it is essential you give precisely the same name each time. The term ‘account name’ is being use here,
but you can enter any text you like. Best to make this text very difficult to guess if you are concerned about being
compelled to disclose your GPG keys. You would not want your spouse simply try ‘ashleymadison’ after you walk
away from your computer to gain access to your previously secret account.

The secret generator will combine the account name with the master seed before generating the secret. This allows
you to use simple predictable account names and still get an unpredictable secret. The master seed used is taken
from master_seed in the file that contains the stealth account if it exists, or the user_key if it does not. By default the
stealth accounts file does not contain a master seed, which makes it difficult to share stealth accounts. You can create
additional stealth account files that do contain master seeds that you can share with your associates.

5.6.10 Misdirection

One way to avoid being compelled to disclose a secret is to disavow any knowledge of the secret. However, the
presence of an account in Avendesora that pertains to that secret undercuts this argument. This is the purpose of stealth
accounts. They allow you to generate secrets for accounts for which Avendesora has no stored information. In this
case Avendesora asks you for the minimal amount of information that it needs to generate the secret. However in some

54 Chapter 5. Contents

Avendesora Documentation, Release 1.25

cases, the amount of information that must be retained is simply too much to keep in your head. In that case another
approach, referred to as secret misdirection, can be used.

With secret misdirection, you do not disavow any knowledge of the secret, instead you say your knowledge is out of
date. So you would say something like “I changed the password and then forgot it”, or “The account is closed”. To
support this ruse, you must use the –seed (or -S) option to ‘avendesora value’ when generating your secret (secrets
misdirection only works with generated passwords, not stored passwords). This causes Avendesora to ask you for an
additional seed at the time you request the secret. If you do not use –seed or you do and give the wrong seed, you
will get a different value for your secret. In effect, using –seed when generating the original value of the secret causes
Avendesora to generate the wrong secret by default, allowing you to say “See, I told you it wouldn’t work”. But when
you want it to work, you just interactively provide the correct seed.

You would typically only use misdirection for secrets you are worried about being compelled to disclose. So it
behooves you to use an unpredictable additional seed for these secrets to reduce the chance someone could guess it.

Be aware that when you employ misdirection on a secret, the value of the secret stored in the archive will not be the
true value, it will instead be the misdirected value.

Secret misdirection works extremely well with the ColdCard hardware bitcoin wallet. This wallet expects you to
provide a PIN when accessing your wallet, but it does not print an error message if you give the wrong pin, instead
it simply gives you access to a different wallet. Putting a small amount of bitcoin into the wallet you access with no
seed makes the ruse more convincing. In this way, the wallet you get when you run:

avendesora value coldcard pin

opens a valid and active wallet that contains very little money. At this point you can say, “Yeah, its largely all gone. I
was hacked. That is why I got this secure hardware wallet. However, it’s a lesson I learned too late.”. Then, when you
are alone, you can run:

avendesora value --seed coldcard pin

and give the correct seed to access all your riches.

5.6.11 Collaborating with a Partner

If you share an accounts file with a partner, then either partner can create new secrets and the other partner can
reproduce their values once a small amount of relatively non-confidential information is shared. This works because
the security of the generated secrets is based on the master seed, and that seed is contained in the accounts file that is
shared in a secure manner once at the beginning. For example, imagine one partner creates an account at the US Postal
Service website and then informs the partner that the name of the new account is USPS and the username is taveren.
That is enough information for the second partner to generate the password and login. And notice that the necessary
information can be shared over an insecure channel. For example, it could be sent in a text message or from a phone
where trustworthy encryption is not available.

The first step in using Avendesora to collaborate with a partner is for one of the partners to generate and then share an
accounts file that is dedicated to the shared accounts. This file contains the master seed, and it is critical to keep this
value secure. Thus, it is recommended that the file be shared in person or that it be encrypted in transit.

Consider an example where you, Siuan, are sharing accounts with your business partner, Moiraine. You have hired a
contractor to run your email server, Elaida, who unbeknownst to you is reading your email in order to steal valuable
secrets. Together, you and Moiraine jointly run Aes Sedai Enterprises. Since you expect more people will need access
to the accounts in the future, you choose to the name the file after the company rather than your partner. To share
accounts with Moiraine, you start by getting Moiraine’s public GPG key. Then, create the new accounts file with
something like:

avendesora new -g siuan@aessedai.com,moiraine@aessedai.com aessedai.gpg

5.6. Advanced Usage 55

https://coldcardwallet.com

Avendesora Documentation, Release 1.25

This generates a new accounts file, ~/.config/avendesora/aessedai.gpg, and encrypts it so only you and Moiraine can
open it. Mail this file to Moiraine. Since it is encrypted, it is to safe to send the file through email. Even though Elaida
can read this message, the accounts file is encrypted so she cannot access the master seed it contains. Moiraine should
put the file in ~/.config/avendesora and then add it to accounts_files in ~/.config/avendesora/accounts_files. You are
now ready to share accounts.

Then, when one partner creates a new account they mail the new account entry to the other partner. This entry does
not contain enough information to allow an eavesdropper such as Elaida to be able to generate the secrets, but now
both partners can. At a minimum you would need to share only the account name and the user name if one is needed.
With that, the other partner can generate the passcode.

When creating accounts to share, the fields should either be generated secrets or information that is not secret. Specif-
ically, you should not use avendesora.Hide or avendesora.Hidden. In addition, you cannot share secrets
encrypted with avendesora.Scrypt. Finally, you cannot share stealth accounts unless the file that contains the
account templates has a master_seed specified, which they do not by default. You would need to create a separate file
for shared stealth account templates and add a master seed to that file manually.

Once you have shared an accounts file, you can also use the identity command to prove your identity to your partner
(described next).

5.6.12 Confirming the Identity of a Partner

The identity command allows you to generate a response to any challenge. The response identifies you to a remote
partner with whom you have shared an account.

If you run the command with no arguments, it prints the list of valid names. If you run it with no challenge, one is
created for you based on the current time and date.

If you have a remote partner to whom you wish to prove your identity, have that partner use Avendesora to generate a
challenge and a response based on your shared secret. Then the remote partner provides you with the challenge and
you run Avendesora with that challenge to generate the same response, which you provide to your remote partner to
prove your identity.

You are free to explicitly specify a challenge to start the process, but it is important that it be unpredictable and that
you not use the same challenge twice. As such, it is recommended that you not provide the challenge. In this situation,
one is generated for you based on the time and date.

Consider an example that illustrates the process. In this example, Siuan is confirming the identity of Moiraine, where
both Siuan and Moiraine are assumed to have shared Avendesora accounts. Siuan runs Avendesora as follows and
remembers the response:

> avendesora identity moiraine
challenge: slouch emirate bedeck brooding
response: spear disable local marigold

This assumes that moiraine is the name, with any extension removed, of the file that Siuan uses to contain their shared
accounts.

Siuan communicates the challenge to Moiraine but not the response. Moiraine then runs Avendesora with the given
challenge:

> avendesora identity siuan slouch emirate bedeck brooding
challenge: slouch emirate bedeck brooding
response: spear disable local marigold

In this example, siuan is the name of the file that Moiraine uses to contain their shared accounts.

56 Chapter 5. Contents

Avendesora Documentation, Release 1.25

To complete the process, Moiraine returns the response to Siuan, who compares it to the response she received to
confirm Moiraine’s identity. If Siuan has forgotten the desired response, she can also specify the challenge to the
identity command to regenerate the expected response.

Alternately, when Siuan sends a message to Moiraine, she can proactively prove her identity by providing both the
challenge and the response. Moiraine could then run the credentials command with the challenge and confirm that she
gets the same response. Other than herself, only Siuan could predict the correct response to any challenge. However,
this is not recommended as it would allow someone with brief access to Suian’s Avendesora, perhaps Leane her
Keeper, to generate and store multiple challenge/response pairs. Leane could then send messages to Moiraine while
pretending to be Siuan using the saved challenge/response pairs. The subterfuge would not work if Moiraine generated
the challenge unless Leane currently has access to Siuan’s Avendesora.

5.6.13 Phonetic Alphabet

When on the phone it can be difficult to convey the letters in an account identifier or other letter sequences. To help
with this Avendesora can convert the sequence to the NATO phonetic alphabet. For example, imaging conveying the
sequence ‘2WQI1T’. To do so, you can run the following:

> avendesora phonetic 2WQI1T
two whiskey quebec india one tango

Alternately, you can run the command without an argument, in which case it simply prints out the phonetic alphabet:

> avendesora p
Phonetic alphabet:

Alfa Echo India Mike Quebec Uniform Yankee
Bravo Foxtrot Juliett November Romeo Victor Zulu
Charlie Golf Kilo Oscar Sierra Whiskey
Delta Hotel Lima Papa Tango X-ray

Now you can easily do the conversion yourself. Having Avendesora do the conversion for you helps you distinguish
similar looking characters such as I and 1 and O and 0.

5.6.14 Upgrading from Abraxas

Avendesora generalizes and replaces Abraxas, its predecessor. To transition from Abraxas to Avendesora, you will
first need to upgrade Abraxas to version 1.8 or higher (use ‘abraxas -v’ to determine version). Then run:

abraxas --export

It will create a collection of Avendesora accounts files in ~/.config/abraxas/avendesora. You need to man-
ually add these files to your list of accounts files in Avendesora. Say one such file is created: ~/.con-
fig/abraxas/avendesora/accounts.gpg. This could be added to Avendesora as follows:

1. create a symbolic link from ~/.config/avendesora/abraxas_accounts.gpg to ~/.con-
fig/abraxas/avendesora/accounts.gpg:

cd ~/.config/avendesora
ln -s ../abraxas/avendesora/accounts.gpg abraxas_accounts.gpg

2. add abraxas_accounts.gpg to account_files list in accounts_files.

Now all of the Abraxas accounts contained in abraxas_accounts.gpg should be available though Avendesora and the
various features of the account should operate as expected. However, secrets in accounts exported by Abraxas are no
longer generated secrets. Instead, the actual secrets are placed in a hidden form in the exported accounts files.

5.6. Advanced Usage 57

Avendesora Documentation, Release 1.25

If you would like to enhance the imported accounts to take advantage of the new features of Avendesora, it is recom-
mended that you do not manually modify the imported files. Instead, copy the account information to one of your own
account files before modifying it. To avoid conflict, you must then delete the account from the imported file. To do
so, create ~/.config/abraxas/do-not-export if it does not exist, then add the account name to this file, and reexport your
accounts from Abraxas.

5.7 Command Reference

5.7.1 add – Add a new account

Usage:

avendesora add [options] [<template>]
avendesora a [options] [<template>]

Options:

-f <file>, –file <file> Add account to specified accounts file.

Creates a new account starting from a template. The template consists of boilerplate code and fields. The fields take
the from _NAME_. They should be replaced by appropriate values or deleted if not needed. If you are using the Vim
editor, it is preconfigured to jump to the next field when you press ‘n’. If the field is surrounded by ‘<<’ and ‘>>’, as
in ‘<<_ACCOUNT_NUMBER_>>’, the value you enter will be concealed.

You can create your own templates by adding them to account_templates in the ~/.config/avendesora/config file.

You can change the editor used when adding account by changing the edit_template, also found in the ~/.con-
fig/avendesora/config file.

The default template is bank. The available templates are: bank, shell, and website.

5.7.2 archive – Generates archive of all account information

Usage:

avendesora archive
avendesora A

This command creates an encrypted archive that contains all the information in your accounts files, including the fully
generated secrets. You should never need this file, but its presence protects you in case you lose access to Avendesora.
To access your secrets without Avendesora, simply decrypt the archive file with GPG. The actual secrets will be
hidden, but it easy to retrieve them even without Avendesora. When hidden, the secrets are encoded in base64. You
can decode it by running ‘base64 -d -’ and pasting the encoded secret into the terminal.

When you run this command it overwrites the existing archive. If you have accidentally deleted an account or changed
a secret, then replacing the archive could cause the last copy of the original information to be lost. To prevent this
from occurring it is a good practice to run the changed command before regenerating the archive. It describes all of
the changes that have occurred since the last time the archive was generated. You should only regenerate the archive
once you have convinced yourself all of the changes are as expected.

5.7.3 browse – Open account URL in web browser

Usage:

58 Chapter 5. Contents

Avendesora Documentation, Release 1.25

avendesora browse [options] <account> [<key>]
avendesora b [options] <account> [<key>]

Options:

-b <browser>, –browser <browser> Open account in specified browser.
-l, –list List available URLs rather than open first.

The account is examined for URLs, a URL is chosen, and then that URL is opened in the chosen browser. First URLs
are gathered from the urls account attribute, which can be a string containing one or more URLs, a list, or a dictionary.
If urls is a dictionary, the desired URL can be chosen by entering the key as an argument to the browse command. If
a key is not given, then the default_url account attribute is used to specify the key to use by default. If urls is not a
dictionary, then the first URL specified is used.

If the urls attribute is not available then URLs are taken from avendesora.RecognizeURL objects in the dis-
covery account attribute. In this case if the name argument is specified to avendesora.RecognizeURL, the
corresponding URL can be chosen using a key.

The default browser is x, which uses the system default browser. You can override the default browser on a per-account
basis by adding an attribute named browser to the account. An example of when you would specify the browser in
an account would be an account associated with Tor hidden service, which generally can only be accessed using
torbrowser:

class SilkRoad(Account):
passcode = Passphrase()
username = Passphrase(length=2, sep='-')
url = 'http://silkroad6ownowfk.onion'
browser = 't'

5.7.4 changed – Show changes since archive was created

Usage:

avendesora changed
avendesora C

When you run the archive command it overwrites the existing archive. If you have accidentally deleted an account or
changed a secret, then replacing the archive could cause the last copy of the original information to be lost. To prevent
this from occurring it is a good practice to run the changed command before regenerating the archive. It describes all
of the changes that have occurred since the last time the archive was generated. You should only regenerate the archive
once you have convinced yourself all of the changes are as expected.

5.7.5 conceal – Conceal text by encoding it

Usage:

avendesora conceal [options] [<text>]
avendesora c [options] [<text>]

Options:

5.7. Command Reference 59

Avendesora Documentation, Release 1.25

-e <encoding>, –encoding
<encoding>

Encoding used when concealing information.

-g <id>, –gpg-id <id> Use this ID when creating any missing encrypted files. Use commas with
no spaces to separate multiple IDs.

-h <path>, –gpg-home
<path>

GPG home directory (default is ~/.gnupg).

-s, –symmetric Encrypt with a passphrase rather than using your GPG key (only appro-
priate for gpg encodings).

Possible encodings include (default encoding is base64):

gpg: This encoding fully encrypts/decrypts the text with GPG key. By default your GPG key is used, but you can
specify symmetric encryption, in which case a passphrase is used.

base64: This encoding obscures but does not encrypt the text. It can protect text from observers that get a quick
glance of the encoded text, but if they are able to capture it they can easily decode it.

scrypt: This encoding fully encrypts the text with your user key. Only you can decrypt it, secrets encoded with scrypt
cannot be shared.

Though available as an option for convenience, you should not pass the text to be hidden as an argument as it is
possible for others to examine the commands you run and their argument list. For any sensitive secret, you should
simply run ‘avendesora conceal’ and then enter the secret text when prompted.

5.7.6 credentials – Show login credentials

Displays the account’s login credentials, which generally consist of an identifier and a secret.

Usage:

avendesora credentials [options] <account>
avendesora login [options] <account>
avendesora l [options] <account>

Options:

-S, –seed Interactively request additional seed for generated secrets.

The credentials can be specified explicitly using the credentials setting in your account. For example:

credentials = 'usernames.0 usernames.1 passcode'

If credentials is not specified then the first of the following will be used if available:

id: username or email
secret: passcode, password or passphrase

5.7.7 edit – Edit an account

Usage:

60 Chapter 5. Contents

Avendesora Documentation, Release 1.25

avendesora edit <account>
avendesora e <account>

Opens an existing account in your editor.

You can specify the editor by changing the edit_account setting in the config file (~/.config/avendesora/config).

5.7.8 find – Find an account

Find accounts whose name contains the search text.

Usage:

avendesora find <text>
avendesora f <text>

5.7.9 help – Give information about commands or other topics

Usage:

avendesora help [options] [<topic>]
avendesora h [options] [<topic>]

Options:

-s, –search list topics that include <topic> as a search term.
-b, –browse open the topic in your default browser.

You can also use avendesora --help or avendesora -h to see the global options for Avendesora.

5.7.10 identity – Generate an identifying response to a challenge

Usage:

avendesora identity [<name> [<challenge>...]]
avendesora ident [<name> [<challenge>...]]
avendesora I [<name> [<challenge>...]]

This command allows you to generate a response to any challenge. The response identifies you to a partner with whom
you have shared an account.

If you run the command with no arguments, it prints the list of available accounts. If you run it with no challenge, one
is created for you based on the current time and date.

If you have a remote partner to whom you wish to prove your identity, have that partner use avendesora to generate a
challenge and a response based on your shared secret. Then the remote partner provides you with the challenge and
you run avendesora with that challenge to generate the same response, which you provide to your remote partner to
prove your identity.

You are free to explicitly specify a challenge to start the process, but it is important that it be unpredictable and that
you not use the same challenge twice. As such, it is recommended that you not provide the challenge. In this situation,
one is generated for you based on the time and date.

See Confirming the Identity of a Partner for an example that illustrates the process.

5.7. Command Reference 61

Avendesora Documentation, Release 1.25

5.7.11 initialize – Create initial set of Avendesora files

Usage:

avendesora initialize [options]
avendesora init [options]

Options:

-g <id>, –gpg-id <id> Use this ID when creating any missing encrypted files. Use commas with no spaces
to separate multiple IDs.

-h <path>, –gpg-home
<path>

GPG home directory (default is ~/.gnupg).

Create Avendesora data directory (~/.config/avendesora) and populate it with initial versions of all essential files.

It is safe to run this command even after the data directory and files have been created. Doing so will simply recreate
any missing files. Existing files are not modified.

5.7.12 interactive – Interactively query account values

Usage:

avendesora interactive <account>
avendesora i <account>

Interactively display values of account fields. Type the first few characters of the field name, then <Tab> to expand the
name. <Tab><Tab> shows all remaining choices. <Enter> selects and shows the value. Type <Ctrl-c> to cancel the
display of a secret. Type <Ctrl-d> or enter empty field name to terminate command.

5.7.13 log – Open the logfile

Usage:

avendesora log

Opens the logfile in your editor.

You can specify the editor by changing the edit_account setting in the config file (~/.config/avendesora/config).

5.7.14 new – Create new accounts file

Usage:

avendesora new [options] <name>
avendesora N [options] <name>

Options:

-g <id>, –gpg-id
<id>

Use this ID when creating any missing encrypted files. Use commas with no spaces
to separate multiple IDs.

62 Chapter 5. Contents

Avendesora Documentation, Release 1.25

Creates a new accounts file. Accounts that share the same file share the same master seed by default and, if the file is
encrypted, can be decrypted by the same recipients.

Generally you create new accounts files for each person or group with which you wish to share accounts. You also use
separate files for passwords with different security domains. For example, a high-value passwords might be placed in
an encrypted file that would only be placed highly on protected computers. Conversely, low-value passwords might
be contained in perhaps an unencrypted file that is found on many computers.

Add a ‘.gpg’ extension to <name> to encrypt the file.

5.7.15 phonetic – Display NATO phonetic alphabet

Usage:

avendesora alphabet [<text>]
avendesora phonetic [<text>]
avendesora p [<text>]

If <text> is given, any letters are converted to the phonetic alphabet. If not given the entire phonetic is displayed.

Example:

> avendesora phonetic 2WQI1T
two whiskey quebec india one tango

> avendesora phonetic
Phonetic alphabet:

Alfa Echo India Mike Quebec Uniform Yankee
Bravo Foxtrot Juliett November Romeo Victor Zulu
Charlie Golf Kilo Oscar Sierra Whiskey
Delta Hotel Lima Papa Tango X-ray

5.7.16 questions – Answer a Security Question

Displays the security questions and then allows you to select one to be answered.

Usage:

avendesora questions [options] <account> [<field>]
avendesora quest [options] <account> [<field>]
avendesora q [options] <account> [<field>]
avendesora qc [options] <account> [<field>]

Options:

-c, –clipboard Write output to clipboard rather than stdout.
-S, –seed Interactively request additional seed for generated secrets.

The ‘qc’ command is a shortcut for ‘questions –clipboard’.

Request the answer to a security question by giving the account name to this command. For example:

avendesora questions bank

5.7. Command Reference 63

Avendesora Documentation, Release 1.25

It will print out the security questions for bank account along with an index. Specify the index of the question you
want answered. You can answer any number of questions. Type <Ctrl-d> or give an empty selection to terminate.

By default Avendesora looks for the security questions in the questions field. If your questions are in a different field,
just specify the name of the field on the command line:

avendesora questions bank verbal

5.7.17 reveal – Reveal concealed text

Transform concealed text to reveal its original form.

Usage:

avendesora reveal [<text>]
avendesora r [<text>]

Options:

-e <encoding>, –encoding <encoding> Encoding used when revealing information.

Though available as an option for convenience, you should not pass the text to be revealed as an argument as it is
possible for others to examine the commands you run and their argument list. For any sensitive secret, you should
simply run ‘avendesora reveal’ and then enter the encoded text when prompted.

5.7.18 search – Search accounts

Search for accounts whose values contain the search text.

Usage:

avendesora search <text>
avendesora s <text>

5.7.19 value – Show an account value

Produce an account value. If the value is secret, it is produced only temporarily unless –stdout is specified.

Usage:

avendesora value [options] [<account> [<field>]]
avendesora val [options] [<account> [<field>]]
avendesora v [options] [<account> [<field>]]

Options:

-c, –clipboard Write output to clipboard rather than stdout.
-s, –stdout Write output to the standard output without any annotation or protections.
-S, –seed Interactively request additional seed for generated secrets.
-v, –verbose Add additional information to log file to help identify issues in account discovery.
-T <title>, –title <title> Use account discovery on this title.

64 Chapter 5. Contents

Avendesora Documentation, Release 1.25

The ‘vc’ command is a shortcut for ‘value –clipboard’.

You request a scalar value by specifying its name after the account. For example:

avendesora value bank pin

If the requested value is composite (an array or dictionary), you should also specify a key that indicates which of
the composite values you want. For example, if the accounts field is a dictionary, you specify accounts.checking
or accounts[checking] to get information on your checking account. If the value is an array, you give the index
of the desired value. For example, questions.0 or questions[0]. If you only specify a number, then the name is
assumed to be questions, as in the list of security questions (this can be changed by specifying the desired name as the
default_vector_field).

The field may be also be a script, with is nothing but a string that it output as given except that embedded attributes
are replaced by account field values. For example:

avendesora value bank '{accounts.checking}: {passcode}'

If no value is requested the result produced is determined by the value of the default attribute. If no value is given
for default, then the passcode, password, or passphrase attribute is produced (this can be changed by specifying the
default_field setting). If default is a script then the script is executed. A typical script might be ‘username: {username},
password: {passcode}’. It is best if the script produces a one line output if it contains secrets. If not a script, the value
of default should be the name of another attribute, and the value of that attribute is shown.

If no account is requested, then Avendesora attempts to determine the appropriate account through discovery. Normally
Avendesora is called in this manner from your window manager. You would arrange for it to be run when you type a
hot key. In this case Avendesora determines which account to use from information available from the environment,
information like the title on active window. In this mode, Avendesora mimics the keyboard when producing its output.

The verbose and title options are used when debugging account discovery. The verbose option adds more information
about the discovery process to the logfile (~/.config/avendesora/log.gpg). The title option allows you to override the
active window title so you can debug title-based discovery. Specifying the title option also scrubs the output and
outputs directly to the standard output rather than mimicking the keyboard so as to avoid exposing your secret.

If the stdout option is not specified, the value command still writes to the standard output if it is associated with a
TTY (if Avendesora is outputting directly to a terminal). If the standard output is not a TTY, Avendesora mimics the
keyboard and types the desired value directly into the active window. There are two common situations where standard
output is not a TTY: when Avendesora is being run by your window manager in response to you pressing a hot key
or when the output of Avendesora is fed into a pipeline. In the second case, mimicking the keyboard is not what you
want; you should use --stdout to assure the chosen value is sent to the pipeline as desired. This also has the added
benefit of stripping off all decorations from the value.

5.7.20 values – Display all account values

Show all account values.

Usage:

avendesora values <account>
avendesora vals <account>
avendesora V <account>

The values of secrets are not actually shown. Rather instructions for viewing the secret value is given. Also, account
attributes that are intended only to control Avendesora, such as discovery, are not shown at all.

5.7. Command Reference 65

Avendesora Documentation, Release 1.25

5.7.21 version – Display Avendesora version

Usage:

avendesora version

5.8 Account Helpers

Account helpers are are classes and character sets that are used in your account attributes. They provide advanced
capabilities such as holding secrets, generating secrets, and recognizing accounts.

5.8.1 Generated Secret Classes

Sublasses of avendesora.GeneratedSecret.

These classes are used when creating account secrets (see Accounts).

Every class starts with a pool of 512 bits of entropy. Each symbol generated consumes some of that entropy, the
amount of which is determine by the number of symbols that are available in the alphabet. For example, passphrases
pull words from a dictionary containing 10,000 words. As such, each word in the passphrase consumes 14 bits of
entropy (ceil(log2(10000))). If too many words are requested, avendesora.SecretExhausted is raised.

class avendesora.Password(length=12, *, alphabet=’abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789’,
master=None, version=None, shift_sort=False, sep=”, prefix=”, suf-
fix=”, is_secret=True)

Generate password.

Generates an arbitrary password by selecting symbols from the given alphabet at random. The entropy of the
generated password is length*log2(len(alphabet)).

Parameters

• length (int) – The number of items to draw from the alphabet when creating the pass-
word.

• alphabet (collection of symbols) – The reservoir of legal symbols to use when
creating the password. By default the set of easily distinguished alphanumeric characters are
used (avendesora.DISTINGUISHABLE). Typically you would use the pre-imported
character sets to construct the alphabet. For example, you might pass: avendesora.
ALPHANUMERIC + ‘+=_&%#@’

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated pass-
word.

• shift_sort (bool) – If true, the characters in the password will be sorted so that the
characters that require the shift key when typing are placed last. This make the password
easier to type.

• sep (str) – A string that is placed between each symbol in the generated password.

• prefix (str) – A string added to the front of the generated password.

• suffix (str) – A string added to the end of the generated password.

66 Chapter 5. Contents

Avendesora Documentation, Release 1.25

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

Examples:

>>> secret = Password()
>>> secret.initialize(account, 'dux')
>>> str(secret)
'tvA8mewbbig3'

>>> secret = Password(shift_sort=True)
>>> secret.initialize(account, 'flux')
>>> str(secret)
'wrncpipvtNPF'

class avendesora.Passphrase(length=4, *, dictionary=None, master=None, version=None, sep=’
’, prefix=”, suffix=”, is_secret=True)

Generate passphrase.

Similar to Password in that it generates an arbitrary passphrase by selecting symbols from the given alphabet at
random, but in this case the default alphabet is a dictionary containing about 10,000 words.

Parameters

• length (int) – The number of items to draw from the alphabet when creating the pass-
word.

• dictionary (str, [str], or callable) – The reservoir of legal symbols to use
when creating the password. If not given, or if ‘default’ is given, this is a predefined list
of 10,000 words. If given as ‘bip39’ or ‘mnemonic’, this is a predefined list of the 2048
bitcoin BIP-39 seed words. Any other string is treated as a path to a file that would contain
the words. A list is taken as is. Finally, you can pass a function that returns the list of words,
in which case the calling of the function is deferred until the words are needed, which is
helpful if creating the list is slow.

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated pass-
word.

• sep (str) – A string that is placed between each symbol in the generated password.

• prefix (str) – A string added to the front of the generated password.

• suffix (str) – A string added to the end of the generated password.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

Example:

>>> secret = Passphrase()
>>> secret.initialize(account, 'dux')
>>> str(secret)
'graveyard cockle intone provider'

5.8. Account Helpers 67

Avendesora Documentation, Release 1.25

class avendesora.PIN(length=4, *, alphabet=’0123456789’, master=None, version=None,
is_secret=True)

Generate PIN.

Similar to Password in that it generates an arbitrary PIN by selecting symbols from the given alphabet at random,
but in this case the default alphabet is the set of digits (0-9).

Parameters

• length (int) – The number of items to draw from the alphabet when creating the pass-
word.

• alphabet (collection of symbols) – The reservoir of legal symbols to use when
creating the password. By default the alphabet is avendesora.DIGITS.

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated pass-
word.

• sep (str) – A string that is placed between each symbol in the generated password.

• prefix (str) – A string added to the front of the generated password.

• suffix (str) – A string added to the end of the generated password.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

Example:

>>> secret = PIN()
>>> secret.initialize(account, 'dux')
>>> str(secret)
'9301'

class avendesora.Question(question, length=3, *, answer=None, dictionary=None, master=None,
version=None, sep=’ ’, prefix=”, suffix=”, is_secret=True)

Generate arbitrary answer to a given question.

Similar to Passphrase() except a question must be specified when created and it is taken to be the security
question. The question is used as a seed rather than the field name when generating the secret.

Parameters

• question (str) – The question to be answered. Be careful. Changing the question in
any way will change the resulting answer.

• length (int) – The number of items to draw from the alphabet when creating the answer.

• dictionary (str, [str], or callable) – The reservoir of legal symbols to use
when creating the password. If not given, or if ‘default’ is given, this is a predefined list
of 10,000 words. If given as ‘bip39’ or ‘mnemonic’, this is a predefined list of the 2048
bitcoin BIP-39 seed words. Any other string is treated as a path to a file that would contain
the words. A list is taken as is. Finally, you can pass a function that returns the list of words,
in which case the calling of the function is deferred until the words are needed, which is
helpful if creating the list is slow.

68 Chapter 5. Contents

Avendesora Documentation, Release 1.25

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated pass-
word.

• sep (str) – A string that is placed between each symbol in the generated password.

• prefix (str) – A string added to the front of the generated password.

• suffix (str) – A string added to the end of the generated password.

• answer (str) – The answer. If provided, this would override the generated answer. May
be a string, or it may be an Obscured object.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

Example

>>> secret = Question('What city were you born in?')
>>> secret.initialize(account, 'dux')
>>> str(secret)
'dustcart olive label'

class avendesora.MixedPassword(length, def_alphabet, requirements, *, master=None, ver-
sion=None, shift_sort=False, is_secret=True)

Generate mixed password.

A relatively low level method that is used to generate passwords from a heterogeneous collection of alphabets.
This is used to satisfy the character type count requirements of many websites. It is recommended that user use
avendesora.PasswordRecipe rather than directly use this class.

Parameters

• length (int) – The number of items to draw from the various alphabets when creating
the password.

• def_alphabet (collection of symbols) – The alphabet to use when filling up
the password after all the constraints are satisfied.

• requirements (list of tuples) – Each tuple has two members, the first is a string
or list that is used as an alphabet, and the second is a number that indicates how many
symbols should be drawn from that alphabet.

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated answer.

• shift_sort (bool) – If true, the characters in the password will be sorted so that the
characters that require the shift key when typing are placed last. This make the password
easier to type.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

5.8. Account Helpers 69

Avendesora Documentation, Release 1.25

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

Example:

>>> secret = MixedPassword(
... 12, ALPHANUMERIC, [(LOWERCASE, 2), (UPPERCASE, 2), (DIGITS, 2)]
...)
>>> secret.initialize(account, 'dux')
>>> str(secret)
'ZyW62fvxX0Fg'

class avendesora.PasswordRecipe(recipe, *, def_alphabet=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789’,
master=None, version=None, shift_sort=False,
is_secret=True)

Generate password from recipe.

A version of MixedPassword where the requirements are specified with a short string rather than using the more
flexible but more cumbersome method of MixedPassword. The string consists of a series of terms separated
by white space. The first term is a number that specifies the total number of characters in the password. The
remaining terms specify the number of characters that should be pulled from a particular class of characters. The
classes are u (upper case letters), l (lower case letters), d (digits), s (punctuation), and c (an explicitly specified
set of characters). For example, ‘12 2u 2d 2s’ indicates that a 12 character password should be generated that
includes 2 upper case letters, 2 digits, and 2 symbols. The remaining characters will be chosen from the base
character set, which by default is the set of alphanumeric characters.

Parameters

• recipe (str) – A string that describes how the password should be constructed.

• def_alphabet (collection of symbols) – The alphabet to use when filling up
the password after all the constraints are satisfied.

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated answer.

• shift_sort (bool) – If true, the characters in the password will be sorted so that the
characters that require the shift key when typing are placed last. This make the password
easier to type.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

Example:

>>> secret = PasswordRecipe('12 2u 2d 2s')
>>> secret.initialize(account, 'pux')
>>> str(secret)
'*m7Aqj=XBAs7'

The c class is special in that it allow you to explicitly specify the characters to use. For example, ‘12
2c!@#$%^&=’ directs that a 12 character password be generated, 2 of which are taken from the set !@#$%^&=:

70 Chapter 5. Contents

mailto:2c!@#\protect \T1\textdollar %\T1\textasciicircum {}&=
mailto:!@#\protect \T1\textdollar %\T1\textasciicircum {}&=

Avendesora Documentation, Release 1.25

>>> secret = PasswordRecipe('12 2u 2d 2c!@#$%^&*')
>>> secret.initialize(account, 'bux')
>>> str(secret)
'YO8K^68J9oC!'

class avendesora.BirthDate(year, min_age=18, max_age=65, fmt=’YYYY-MM-DD’, *, mas-
ter=None, version=None, is_secret=True)

Generates an arbitrary birthdate for someone in a specified age range.

This function can be used to generate an arbitrary date using:

>>> secret = BirthDate(2015, 18, 65)
>>> secret.initialize(account, 'dux')
>>> str(secret)
'1970-03-22'

For year, enter the year the account that contains BirthDate was created. Doing so anchors the age range. In this
example, the creation date is 2015, the minimum age is 18 and the maximum age is 65, meaning that a birthdate
will be chosen such that in 2015 the birth date could correspond to someone that is between 18 and 65 years old.

You can use the fmt argument to change the way in which the date is formatted:

>>> secret = BirthDate(2015, 18, 65, fmt="M/D/YY")
>>> secret.initialize(account, 'dux')
>>> str(secret)
'3/22/70'

Parameters

• year (int) – The year the age range was established.

• min_age (int) – The lower bound of the age range.

• max_age (int) – The upper bound of the age range.

• fmt (str) – Specifies the way the date is formatted. Consider an example date of 6 July
1969. YY and YYYY are replaced by the year (69 or 1969). M, MM, MMM, and MMMM
are replaced by the month (7, 07, Jul, or July). D and DD are replaced by the day (6 or 06).

• master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained in an account file. This
argument overrides that behavior and instead explicitly specifies the master seed for this
secret.

• version (str) – An optional seed. Changing this value will change the generated answer.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.SecretExhausted – The available entropy has been exhausted. This
occurs when the requested length is too long.

class avendesora.OTP(shared_secret, *, interval=30, digits=6)
One Time Password

Generates a secret that changes over time that generally is used as a second factor when authenticating. It can
act as a replacement for, and is fully compatible with, Google Authenticator or Authy. You would provide the
text version of the shared secret that is presented to you when first configuring your second factor authentication.
See One-Time Passwords for more information.

Only available if pyotp is installed (pip install pyotp).

5.8. Account Helpers 71

Avendesora Documentation, Release 1.25

Parameters

• shared_secret (str) – The shared secret in base32.

• interval (int) – Update interval in seconds. Use 30 to mimic Google Authenticator, 10
to mimic Authy.

• digits (int) – Number of digits to output, choose between 6, 7, or 8. Use 6 to mimic
Google Authenticator, 7 to mimic Authy.

exception avendesora.SecretExhausted(**kwargs)
Secret exhausted.

This generally results if the length of the requested secret is too long.

This exception subclasses avendesora.PasswordError.

report(**new_kwargs)
Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

Parameters **kwargs – report() takes any of the normal keyword arguments normally al-
lowed on an informant (culprit, template, etc.). Any keyword argument specified here over-
rides those that were specified when the exception was first raised.

terminate(**new_kwargs)
Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

Parameters **kwargs – report() takes any of the normal keyword arguments normally al-
lowed on an informant (culprit, template, etc.). Any keyword argument specified here over-
rides those that were specified when the exception was first raised.

5.8.2 Character Sets

These are useful when constructing generated secrets. They are used to build the alphabet used by the generator. For
example, you can specify that passwords should be constructed from 12 lower case letters and digits with:

Password(length=12, alphabet=LOWERCASE+DIGITS)

Or here is an example that starts with the alphanumeric and punctuation characters, and removes those that require the
shift key to type:

Password(length=12, alphabet=exclude(ALPHANUMERIC+PUNCTUATION, SHIFTED))

avendesora.exclude(chars, exclusions)
Exclude Characters

Use this to remove characters from a character set.

Parameters

• chars (str) – Character set to strip.

• exclusions (str) – Characters to remove from character set.

Example:

72 Chapter 5. Contents

Avendesora Documentation, Release 1.25

>>> exclude('ABCDEF', 'AEF')
'BCD'

avendesora.LOWERCASE
Lower case ASCII letters: avendesora.LOWERCASE = “abcdefghijklmnopqrstuvwxyz”

avendesora.UPPERCASE
Upper case ASCII letters: avendesora.UPPERCASE = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”

avendesora.LETTERS
Upper and lower case ASCII letters: avendesora.LETTERS = avendesora.LOWERCASE +
avendesora.UPPERCASE

avendesora.DIGITS
ASCII digits: avendesora.DIGITS = “0123456789”

avendesora.ALPHANUMERIC
ASCII letters and digits: avendesora.ALPHANUMERIC = avendesora.LETTERS + avendesora.
DIGITS

avendesora.HEXDIGITS
Hexidecimal digits: avendesora.HEXDIGITS = “0123456789abcdef”

avendesora.PUNCTUATION
ASCII punctuation characters: avendesora.PUNCTUATION = “!”#$%&’()*+,-./:;<=>?@[\]^_‘{|}~”

avendesora.SYMBOLS
ASCII punctuation characters excluding ‘, “, ‘, and \: avendesora.SYMBOLS = ex-
clude(avendesora.PUNCTUATION, “’”‘")

avendesora.WHITESPACE
ASCII white space characters (excluding newlines): avendesora.WHITESPACE = ” \t”

avendesora.PRINTABLE
All ASCII printable characters (letters, digits, punctuation, whitespace): avendesora.PRINTABLE =
avendesora.ALPHANUMERIC + avendesora.PUNCTUATION + avendesora.WHITESPACE

avendesora.DISTINGUISHABLE
ASCII letters and digits with easily confused characters removed: avendesora.DISTINGUISHABLE =
exclude(avendesora.ALPHANUMERIC, ‘Il1O0’)

avendesora.SHIFTED
ASCII characters that are typed using the shift key: avendesora.SHIFTED = avendesora.UPPERCASE
+ ‘~!@#$%^&*()_+{}|:”<>?’

5.8.3 Obscured Secret Classes

Sublasses of avendesora.ObscuredSecret.

These classes are used when creating account secrets (see Accounts).

class avendesora.Hide(plaintext, *, secure=True, is_secret=True)
Hide text

Marks a value as being secret.

Parameters

• plaintext (str) – The value of interest.

5.8. Account Helpers 73

Avendesora Documentation, Release 1.25

• secure (bool) – Indicates that this secret is of high value and so should not be found in
an unencrypted accounts file.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

class avendesora.Hidden(encoded_text, *, secure=True, encoding=None, is_secret=True)
Hidden text

This encoding obscures but does not encrypt the text.

Parameters

• encoded_text (str) – The value of interest encoded in base64.

• secure (bool) – Indicates that this secret is of high value and so should not be found in
an unencrypted accounts file.

• encoding (str) – The encoding to use for the decoded text.

• is_secret (bool) – Should value be hidden from user unless explicitly requested.

Raises avendesora.PasswordError – invalid value.

class avendesora.GPG(ciphertext, *, secure=True, encoding=None)
GPG encrypted text

The secret is fully encrypted with GPG. Both symmetric encryption and key-based encryption are supported.

Parameters

• ciphertext (str) – The secret encrypted and armored by GPG.

• encoding (str) – The encoding to use for the deciphered text.

Raises avendesora.PasswordError – invalid value.

class avendesora.Scrypt(ciphertext, *, secure=True, encoding=’utf8’)
Scrypt encrypted text

The secret is fully encrypted with scrypt.

Only available if scrypt is installed (pip install scrypt).

Parameters

• ciphertext (str) – The secret encrypted and armored by GPG.

• encoding (str) – The encoding to use for the deciphered text.

Raises avendesora.PasswordError – invalid value.

class avendesora.WriteFile(path, contents, mode=384)
Write a text file containing a secret.

Parameters

• path (str) – A path to the file that is to be written.

• contents (str or secret) – The desired contents of the file.

5.8.4 Recognizer Classes

These classes are used in account discovery.

74 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class avendesora.RecognizeAll(*recognizers, **kwargs)
Run script if all recognizers match.

Takes one or more recognizers. Script is run if all recognizers match.

Parameters

• recognizer (Recognizer) – One or more instances of Recognizer.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeAny(*recognizers, **kwargs)
Run script if any recognizers match.

Takes one or more recognizers. Script is run if any recognizers match.

Parameters

• recognizer (Recognizer) – One or more instances of Recognizer.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeTitle(*titles, **kwargs)
Run script if window title matches.

Takes one or more glob strings. Script is run if window title matches any of the glob strings.

Parameters

• titles (str) – One or more glob strings.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

5.8. Account Helpers 75

Avendesora Documentation, Release 1.25

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeURL(*urls, **kwargs)
Run script if URL matches.

Takes one or more URLs. Script is run if URL embedded in window title matches any of the given URLs.
Assumes that a browser plugin has embedded the URL in the browser’s window title. This is generally safer
and more robust that RecognizeTitle when trying to match web pages.

When giving the URL, anything specified must match and globbing is not supported. If you give a partial path,
by default Avendesora will match up to what you have given, but you can require an exact match of the entire
path by specifying exact_path=True to RecognizeURL. If you do not give the protocol, the default_protocol
(https) is assumed.

Parameters

• urls (list) – At least one url.

• exact_path (bool) – If True, path given in the URL must be matched completely, partial
matches are ignored.

• fragment (str) – If given, it must match the URL fragment exactly. The URL fragment
is the part of the url after #.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeCWD(*dirs, **kwargs)
Run script if current working directory matches.

Takes one or more paths. Script is run if any path refers to the current working directory.

Parameters

• path (str) – One or more directory paths.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

76 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class avendesora.RecognizeHost(*hosts, **kwargs)
Run script if host name matches.

Takes one or more host names. Script is run if the current host name matches one of the given host names.

Parameters

• host (str) – One or more host names.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeUser(*users, **kwargs)
Run script if user name matches.

Takes one or more user names. Script is run if the current user name matches one of the given user names.

Parameters

• user (str) – One or more user names.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeEnvVar(name, value, script=True)
Run script if environment variable matches.

Script is run if the environment variable exists and its value matches the value given.

Parameters

• name (str) – Name of environment variable.

• value (str) – Value of environment variable.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

5.8. Account Helpers 77

Avendesora Documentation, Release 1.25

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeNetwork(*macs, **kwargs)
Recognize network from MAC address.

Matches if any of the MAC addresses reported by /sbin/arp match any of those given as an argument.

Parameters

• mac (str) – MAC address given in the form: ‘00:c9:a9:f7:30:00’.

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

class avendesora.RecognizeFile(filepath, contents=None, wait=60, **kwargs)
Recognize file.

Matches if file exists and was created within the last few seconds.

Parameters

• filepath (str) – Path to file.

• contents (str) – Expected file contents. If given, should match contents of file.

• wait (float) – Do not match if file is older than this value (seconds).

• script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script surrounded by braces, in which
case the value of the field replaces the field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding
account attribute. In addition to the fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N seconds.

If True is give, the default field is produced followed by a return.

Raises avendesora.PasswordError

5.8.5 Utility Classes

These classes are used as account values, (see Scripts).

78 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class avendesora.Script(script=’username: {username}, password: {passcode}’)
Takes a string that contains attributes. Those attributes are expanded before being output. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value of the corresponding account attribute.
In addition to the account attributes, {tab} and {return} are replaced by a tab or carriage return character.

Parameters script (str) – The script.

5.9 Configuring

Avendesora is configured by way of a collection of files contained in the config directory (~/.config/avendesora). This
directory may contain the following files:

5.9.1 Configuration Files

accounts_files

This file contains the list of known account files. The first file in the list is the default account file (this is
where new accounts go by default). You can use the new command to add additional files to this list, but
to delete account file you must manually edit this file and remove them from the list.

config, config.doc

You control the behavior of Avendesora through a collection of settings that are specified in config. The
available settings and their default values are documented in config.doc. Generally you only place values
in config if you would like to change them from their default value. In that way, you will get the latest
values for all other settings when you update Avendesora.

hashes

One of the risks in using a password generator is that changed in the code can result in the passwords
changing. Thus there is a risk that when you upgrade Avendesora that your passwords will change.
Avendesora provides the archive and changed commands to help detect these situations. It also keeps
hashes of several key parts of the code that if changed could result in the passwords changing. When
Avendesora runs, it recomputes these hashes on itself and compares them to the hashes saved in this file.
If any of the hashes have changed a warning message is produced, which can alert you to changes that
you might have otherwise missed.

It is normal that these hashes change when the program is updated. When you see the message that the
hashes have changed you should run the changed command to assure that none of your generated secrets
have changed. This assumes that you have created an archive file and kept it up to date.

stealth_accounts

This file contains the definitions of the available stealth accounts. Stealth accounts allow you to create
passwords for accounts that are not kept in an account file.

5.9. Configuring 79

Avendesora Documentation, Release 1.25

<accounts file>

A file containing a collection of related accounts. All accounts in a file share a common master seed.

<archive file>

This file contains all known accounts with any generated secrets expanded. It is used to identify account
values that may have inadvertently changed.

<log file>

The log file is created after each invocation of Avendesora. It provides details about the run that can help
understand what happened during the run, which can help you resolve issues when things go wrong. This
file can leak account information, and so it is best if it is encrypted.

5.9.2 Settings

The settings are documented in config.doc, and can be overwritten by specifying the desired values in the config file
(found in ~/.config/avendesora). The available settings are:

log_file

The desired name of the log file (relative to config directory). Adding a suffix of .gpg or .asc causes the
file to be encrypted (otherwise it can leak account names). Use None to disable logging.

The default is ‘log.gpg’.

archive_file

The desired name of the archive file (relative to config director). End the path in .gpg or .asc. Use None
to disable archiving.

The default is ‘archive.gpg’.

previous_archive_file

The existing archive file is renamed to this name when updating the archive file. This could be helpful if
the archive file is somehow corrupted.

The default is ‘previous_archive_file’.

archive_stale

The archive file is consider stale if it is this many days older than the most recently updated account file.

The default is = 1.

80 Chapter 5. Contents

Avendesora Documentation, Release 1.25

default_field

The name of the field to use for the value command when one is not given. May be a space separated list
of names, in which case the first that is found is used.

The default is ‘passcode password passphrase’.

default_vector_field

The name of the field to use when an integer is given as the argument to the value command. In this
case the field is expected to be a list and the argument is taken to be the index of the desired value. For
example, if default_vector_field is ‘question’ and the argument given with the value command is 1, then
question[1] is produced.

The default is ‘questions’.

dynamic_fields

Fields whose values can change in real time. These fields will not be mentioned by the changed command,
even if their value differs from when the most recent archive was created.

The default is ‘’.

hidden_fields

Names of fields that should not appear in the summary produced by the values command unless the
--all option is specified. A typical value includes estimated_value, postmortem_recipients, and bitwar-
den.

The default is ‘’.

credential_ids

A string that contains the field names (space separated) that should be considered by the credentials
command for the account identity.

The default is ‘username email’.

credential_secrets

A string that contains the field names (space separated) that should be considered by the credentials
command for the primary account secret.

The default is ‘passcode password passphrase email’.

display_time

The number of seconds that the secret will be displayed before it is erased when writing to the TTY or the
clipboard.

The default is 60.

5.9. Configuring 81

Avendesora Documentation, Release 1.25

ms_per_char

The time between keystrokes when autotyping. The default is 12ms. This is the global setting. Generally
it is not necessary to change this. Leaving at its default value works in most cases and result in a pleasingly
fast response times. However, some websites, particularly those that are infested with javascript helpers,
cannot tolerate extremely fast typing rates. In these cases it is better to use the rate attribute to the
discovery script to limit the typing rate. Doing so only slows the entry of your credentials on those
websites.

The default is 12.

encoding

The unicode encoding to use when reading or writing files.

The default is ‘utf-8’.

edit_account

The command used when editing an account. The command is given as list of strings. The strings may
contain {filepath} and {account}, which are replaced by the path to the file and the name of the account.

The default is suitable if you use Vim:

edit_account = (
'gvim', # use gvim -v so that user can access
'-v', # the X clipboard buffers
'+silent! /^class {account}(Account):/',
'+silent! normal zozt', # open the fold, position near top of

→˓screen
'{filepath}'

)

edit_template

The command used when creating a new account that has been initialized with a template. The command
is given as list of strings. The strings may contain {filepath}, which is replaced by the path to the file.

The default is suitable if you use Vim:

edit_template = (
'gvim', # use gvim -v so that user can access
'-v', # the X clipboard buffers
r'+silent! /_[A-Z0-9_]\+_/', # matches user modifiable template fields

fields take the form '_AAA_'
'+silent! normal zozt', # open the fold, position near top of

→˓screen
'{filepath}'

)

browsers

A dictionary containing the supported browsers. For each entry the key is the name to be used for the
browser, and the value is string that contains the command that invokes the browser. The value may

82 Chapter 5. Contents

Avendesora Documentation, Release 1.25

contain {url}, which is replaced by the URL to open.

The default is:

browsers = {
'c': 'google-chrome {{url}}',
'ci': 'google-chrome --incognito {{url}}',
'f': 'firefox -new-tab {{url}}',
'fp': 'firefox -private-window {{url}}',
'q': 'qutebrowser {{url}}',
't': 'torbrowser {{url}}',
'x': 'xdg-open {{url}}',

}

default_browser

The name of the default browser. This name should be one of the keys in the browsers dictionary.

The default value is ‘f’.

command_aliases

You can create custom short cuts for Avendesora commands using the this setting. By default, Avendesora
comes with a collection of aliases, but you can change them, delete them, or add others. Aliases are
specified with a dictionary, where the key is the alias, and the value is a list that consists of full command
name and an optional set of command line arguments. For example:

command_aliases = dict(
b = ['browse'],
bc = ['browse', '--browser', 'c'],

)

Alternately, you can specify the value of each alias as a string, in which case it is split at white space to
provide the command name and options:

command_aliases = dict(
b = 'browse',
bc = 'browse --browser c',

)

In either case, the first item must be the name of a built-in command.

With this set of aliases, ‘b’ becomes a short cut for ‘browse’ and ‘bc’ becomes a short cut for ‘browse
–browser c’.

With the introduction of this setting, the hard-coded command short cuts were removed from Avendesora
and replaced by the default value of this setting:

command_aliases = dict(
a = 'add',
A = 'archive',
b = 'browse',
bc = 'browse --browser c',
c = 'conceal',
C = 'changed',
e = 'edit',

(continues on next page)

5.9. Configuring 83

Avendesora Documentation, Release 1.25

(continued from previous page)

f = 'find',
h = 'help',
ident = 'identity',
I = 'identity',
init = 'initialize',
i = 'interactive',
login = 'credentials',
l = 'credentials',
N = 'new',
alphabet = 'phonetic',
p = 'phonetic',
quest = 'questions',
q = 'questions',
qc = 'questions --clipboard',
r = 'reveal',
s = 'search',
val = 'value',
v = 'value',
vc = 'value --clipboard',
vals = 'values',
vs = 'values',
V = 'values',

)

Specifying your own value for command_aliases overrides the built-in default. If you would like to add
your own aliases, you should consider specifying the above and then add in your new aliases.

default_protocol

The default protocol to use for a URL if the protocol is not specified in the requested URL. Generally this
should be ‘https’ or ‘http’, though ‘https’ is recommended.

The default is ‘https’.

config_dir_mask

An integer that determines if the permissions of Avendesora configuration directory (~/.con-
fig/avendesora) are too loose. If they are, a warning is printed. A bitwise and operation is performed
between this value and the actual file permissions, and if the result is nonzero, a warning is printed. Set to
0o000 to disable the warning. Set to 0o077 to generate a warning if the configuration directory is readable
or writable by the group or others. Set to 0o007 to generated a warning if the directory is readable or
writable by others.

The default is 0o077.

account_file_mask

An integer that determines if the permissions of Avendesora account files are too loose. If they are, a
warning is printed and the permissions are changed. A bitwise and operation is performed between this
value and the actual file permissions, and if the result is nonzero, a warning is printed. Set to 0o000
to disable the warning. Set to 0o077 to generate a warning if the configuration directory is readable or
writable by the group or others. Set to 0o007 to generated a warning if the directory is readable or writable
by others.

84 Chapter 5. Contents

Avendesora Documentation, Release 1.25

The default is 0o077.

label_color

The color of the label used by the value and values commands. Choose from ‘black’, ‘red’, ‘green’,
‘yellow’, ‘blue’, ‘magenta’, ‘cyan’, ‘white’.

The default is ‘blue’.

highlight_color

The color of the highlight used by the value and values commands. Choose from ‘black’, ‘red’, ‘green’,
‘yellow’, ‘blue’, ‘magenta’, ‘cyan’, ‘white’.

The default is ‘magenta’.

color_scheme

The color scheme used for the label color. Choose from ‘dark’, ‘light’ or None. If the shell background
color is light, use ‘dark’.

The default is ‘dark’.

use_pager

Use a external program to break long output into pages. May be either a boolean or a string. If a string the
string is taken to be a command line use to invoke a paging program (like ‘more’). If True, the program
name is taken from the PAGER environment variable if set, or less is used if not set. If False, a paging
program is not used.

The default is True.

selection_utility

Which utility should be used when it becomes necessary for you to interactively make a choice. Two
utilities are available: gtk, the default, and dmenu.

gtk is the built-in selection. When needed it pops a small dialog box in the middle of the screen. You can
use the j and k to navigate to your selection and l to make the selection or h to cancel. Alternately you can
use the arrow keys and Enter and Esc to navigate, select, and cancel.

dmenu is an external utility, and must be installed. With dmenu you type the first few letters of your
selection to highlight it, then type Enter to select or Esc to cancel.

The default is ‘gtk’.

verbose

Set this to True to generate additional information in the log file that can help debug account discovery
issues. Normally it should be False to avoid leaking account information into log file. This is most useful
when debugging account discovery, and in that case this setting has largely been superseded by the use of
the --title and --verbose command line options.

The default is False.

5.9. Configuring 85

Avendesora Documentation, Release 1.25

account_templates

The available account templates. These are used when creating new accounts. The templates are given as
a dictionary where the key is the name of the template and the value is the template itself. The template
is passed through textwrap.dedent() to remove any leading white space. Any lines that begin with ‘#
Avendesora: ‘ represent comments that can contain instructions to the user. They will are removed when
the account is created.

additional_account_templates

Similar to account_templates, this settings allows you to add to any built-in templates whereas you would
override the built-in templates if you used account_templates directly.

default_account_template

The default account template that is used when creating a new account and the user does not specify a
template name.

gpg_ids

The GPG ID or IDs to use by default when creating encrypted files (the archive and account files).

gpg_armor

In the GPG world, armoring a file means converting it to simple ASCII. Choose between ‘always’, ‘never’
and ‘extension’ (.asc: armor, .gpg: no).

The default is ‘extension’.

gpg_home

This is your GPG home directory. By default it will be ~/.gnupg.

gpg_executable

Path to the gpg2 executable.

The default is /usr/bin/gpg2.

xdotool_executable

Path to the xdotool executable.

The default is /usr/bin/xdotool.

86 Chapter 5. Contents

Avendesora Documentation, Release 1.25

xsel_executable

External command that is used to place a value in the X selection buffer. Use ‘/usr/bin/xsel -p’ if you wish
to use the primary buffer (mouse middle click). Use ‘/usr/bin/xsel -b’ if you wish to use the clipboard
buffer (Ctrl-V or mouse right click then paste).

The default is /usr/bin/xsel (uses xsel default, which is the primary buffer).

dmenu_executable

Path to the dmenu executable. Avendesora can be configured to use dmenu as selection utility rather than
built-in gtk version.

The default is /usr/bin/dmenu.

5.10 Python API

5.10.1 Introductory Examples

Access an Account Value

There are times where you might want to access an account value using a single string that contains both the account
and the field name, as shown in this example:

from avendesora import PasswordGenerator, PasswordError

access_key_in_avendesora = 'iexcloud:api_key'
try:

pw = PasswordGenerator()
api_key = str(pw.get_value(access_key_in_avendesora))

except PasswordError as e:
e.terminate()

Access Several Values for a Particular Account

You can access account information from Avendesora using Python using a simple relatively high-level interface as
shown in this example:

from avendesora import PasswordGenerator, PasswordError
from inform import display, fatal, os_error
from shlib import Run
from pathlib import Path

try:
pw = PasswordGenerator()
account = pw.get_account('mybank')
name = account.get_value('name')
username = account.get_username()
passcode = account.get_passcode()
url = account.get_value('ofxurl')

except PasswordError as e:
e.terminate()

(continues on next page)

5.10. Python API 87

Avendesora Documentation, Release 1.25

(continued from previous page)

try:
curl = Run(

f'curl -K - {url!s}',
stdin = f'user="{username!s}:{passcode!s}"',
modes='sOEW0'

)
Path(f'{name!s}.ofx').write_text(curl.stdout)

except OSError as e:
fatal(os_error(e))

Basically, the approach is to open the password generator, open an account, and then access values of that account.
The various components of the Avendesora programming interface are described next.

Using an Account Value

Both of the two examples given above us an get_value method, but they are methods to two different classes. In
the first example, get_value is a method of the avendesora.PasswordGenerator class; it requires you to
specify both the account and field names in a single string passed as the primary argument. In the second example,
get_value is a method of the avendesora.Account class. In this case you have already specified the account, so
you only need to specify the desired field name as an argument. In both cases the methods return an avendesora.
AccountValue object. This is also true for avendesora.Account.get_username() and avendesora.
Account.get_password().

The various aspects of the value are available as attributes.

value – the value itself
is_secret – indicates whether the value is a secret
name – identifier for the first level of a field
key – identifier for the second level of a field
field – name.key
desc – description

If you cast the object to a string, you get the value in the form of a string.

In addition, the object provides the avendesora.AccountValue.render() method for flexibly converting the
account value to a string. You use it by providing one or more template strings where the attributes are accessed using
a single letter contained with braces. So for example:

print(passcode.render('{n} = {v}')
print(passcode.render(('{f} ({d}): {v}', '{f}: {v}'))

You can include normal Python string formatting codes as well.

print(passcode.render('{n:>10} = {v}')

5.10.2 Components

This section documents the programming interface for Avendesora. You can view the Avendesora source code, partic-
ularly avendesora.command, for further examples on how to use this interface.

88 Chapter 5. Contents

Avendesora Documentation, Release 1.25

PasswordGenerator Class

This is the entry class to Avendesora. It is the only class you need instantiate directly. By instantiating it you cause
Avendesora to read the user’s account files.

class avendesora.PasswordGenerator(init=False, gpg_ids=None, check_integrity=False, warn-
ings=True)

Initializes the password generator. You should pass no arguments unless you are creating the user’s Avendesora
data directory.

Once instantiated, you can use get_account() to load a specific account, or all_accounts() to load all accounts.

Parameters

• init (bool) – Create user’s directory.

• gpg_ids (list of strings) – List of GPG identities to use when creating user’s
directory.

• check_integrity (bool) – If true will validate that certain critical components in
Avendesora have not be tampered with. Checking the integrity can take up to a second,
so recommend you pass False on interactive commands that benefit from low startup over-
head and True on the more expensive commands to assure integrity is occasionally checked.

• warnings (bool) – Suppress warnings from accounts. Useful when processing many
accounts. Does not affect warnings from the integrity check.

Raises avendesora.PasswordError – Indicates an issue opening the user’s accounts.

all_accounts()
Iterate through all accounts.

challenge_response(name, challenge)
Generate a response to a challenge.

Given the name of a master seed (actually the basename of the file that contains the master seed), returns
an identifying response to a challenge. If no challenge is provided, one is generated based on the time and
date. Returns both the challenge and the expected response as a tuple.

Parameters

• name (str) – The name of the master seed.

• challenge (str) – The challenge (may be empty).

discover_account(url=None, title=None, verbose=False)
Discover the account from the environment.

Examine the environment and return the script that matches (the script is initialized, and so contains a
pointer to the right account). If more than one account/secret matches, user is queried to resolve the
ambiguity.

Parameters

• url (str) – Specifying the URL short-circuits the processing of the title that is used to
find the URL.

• title (str) – Override the window title. This is used for debugging.

• verbose (bool) – Run the discovery process in verbose mode (adds more information
to log file that can help debug account discovery.

Raises avendesora.PasswordError – There is no account that matches the given envi-
ronment.

5.10. Python API 89

Avendesora Documentation, Release 1.25

find_accounts(target)
Find accounts with names or aliases that contain a substring.

Parameters target (str) – The desired substring.

Returns Iterates through matching accounts.

Return type avendesora.Account

get_account(name, request_seed=False, stealth_name=None)
Return a specific account.

Parameters

• name (str) – Looks up an account by name and returns it. This name must match an
account name or an account alias. The matching algorithm ignores case and treats dash
and underscore as equivalent.

• request_seed (str or bool) – If specified an additional seed is provided to the
account (see: misdirection). It may be specified as a string, in which case it is used as the
seed. Otherwise if true, the seed it requested directly from the user.

• stealth_name (str) – The name used as the account name if the account is a stealth
account.

Returns An account. The class itself is returned, and not an instance of the class.

Return type avendesora.Account

Raises avendesora.PasswordError – There is no account that matches the given name.

get_value(path, request_seed=False, stealth_name=None)
Get account value given path that includes account and field names.

Parameters

• path (str) – Path includes account name and field name separated by a colon. Paths of
the following forms are accepted:

account: account’s default field
account:name: account and field name of a scalar value
account:name.key or account:name[key]:

member of a dictionary or array
key is string for dictionary, integer for array

• request_seed (str or bool) – If specified an additional seed is provided to the
account (see: misdirection). It may be specified as a string, in which case it is used as the
seed. Otherwise if true, the seed it requested directly from the user.

• stealth_name (str) – The name used as the account name if the account is a stealth
account.

Returns An account. The class itself is returned, and not an instance of the class.

Return type avendesora.Account

Raises avendesora.PasswordError – There is no account of field that matches the given
path.

search_accounts(target)
Find accounts with values that contain a substring.

Parameters target (str) – The desired substring.

Returns Iterates through matching accounts.

90 Chapter 5. Contents

Avendesora Documentation, Release 1.25

Return type avendesora.Account

Account Class

class avendesora.Account
Class that holds all the information specific to an account.

Add desired account information as attributes of the class.

classmethod export(fold_level=1)
Return all account fields along with their values as a dictionary

Used when exporting accounts. If fold_level is truthy, it should be a positive integer that indicates the fold
level for each account.

Returns A string that contains all account fields with all secrets included formatted as an
Account class.

classmethod get_composite(name, default=None)
Get field value given a field name.

A lower level interface than get_value() that given a name returns the value of the associated field, which
may be a scalar (string or integer) or a composite (array of dictionary). Unlike get_value(), the actual
value is returned, not a object that contains multiple facets of the value.

Parameters name (str) – The name of the field.

Returns The requested value.

classmethod get_fields(all=False, sort=False)
Iterate through fields.

Iterates through the field names.

Example:

for name, keys in account.get_fields():
for key, value in account.get_values(name):

display(indent(
value.render(('{f} ({d}): {v}', '{f}: {v}'))

))

Example:

fields = [
account.combine_field(name, key)
for name, keys in account.get_fields()
for key in keys

]
for field in fields:

value = account.get_value(field)
display(f'{field}: {value!s}')

Parameters

• all (bool) – If False, ignore the tool fields.

• sort (bool) – If False, use natural sort order.

Returns A pair (2-tuple) that contains both field name and the key names. None is returned
for the key names if the field holds a scalar value.

5.10. Python API 91

Avendesora Documentation, Release 1.25

classmethod get_name()
Get account name.

Returns Returns the primary account name. This is generally the class name converted to
lower case unless it was overridden with the NAME attribute.

classmethod get_passcode()
Get the passcode.

Like get_value(), but tries the credential_secrets in order and returns the first found. credential_secrets is
an Avendesora configuration setting that by default is password, passphrase, and passcode.

Returns The passcode.

classmethod get_scalar(name, key=None, default=False)
Get field value given a field name and key.

A lower level interface than get_value() that given a name and perhaps a key returns a scalar value. Also
takes an optional default value that is returned if the value is not found. Unlike get_value(), the actual
value is returned, not a object that contains multiple facets of the value.

The name is the field name, and the key would identity which value is desired if the field is a composite. If
default is False, an error is raised if the value is not present, otherwise the default value itself is returned.

Parameters

• name (str) – The name of the field.

• key (str or int) – The key for the desired value (should be None for scalar
values).

• default – The value to return if the requested value is not available.

Returns The requested value.

classmethod get_username()
Get the username.

Like get_value(), but tries the credential_ids in order and returns the first found. credential_ids is an
Avendesora configuration setting that by default is username and email.

Returns The username or email address.

classmethod get_value(field=None)
Get account value.

Return value from the account given a user friendly identifier or script. User friendly identifiers include:

None: value of default field
name: scalar value
name.key or name[key]:

member of a dictionary or array
key is string for dictionary, integer for array

Scripts are simply strings with embedded attributes. Ex: ‘username: {username}, password: {passcode}’

Parameters field (str) – Field identifier or script.

Returns the desired value.

Return type avendesora.AccountValue

classmethod get_values(name)
Iterate through the values for a field.

92 Chapter 5. Contents

Avendesora Documentation, Release 1.25

Parameters name (str) – The name of the field.

Returns Returns a pair (2-tuple) that contains the key and the value given as an
avendesora.AccountValue for each of the values. If the value is a scalar, the
key is None.

AccountValue Class

class avendesora.AccountValue(value, is_secret, name=None, key=None, desc=None)
An account value.

This is the object returned by avendesora.Account.get_value() and avendesora.Account.
get_values(). It contains information about a single account value. Specifically, it provides the following
attributes: value, is_secret, name, key, field, and desc.

render(fmts=(’{f} ({d}): {v}’, ’{f}: {v}’))
Return value formatted as a string.

Parameters fmts (collection of strings) – fmts contains a sequence of format
strings that are tried in sequence. The first one for which all keys are known is used.
The possible keys are:

n — name (identifier for the first level of a field)
k — key (identifier for the second level of a field)
f — field (name.key)
d — description
v — value

If none work, the value alone is returned.

Returns The value rendered as a string.

PasswordError Exception

exception avendesora.PasswordError(*args, **kwargs)
Password error.

This exception subclasses Inform.Error.

This exception subclasses inform.Error.

get_codicil(codicil=None)
Get the codicils.

A codicil is extra text attached to an error that can clarify the error message or to give extra context.

Return the codicil as a tuple. If a codicil is specified as an argument, it is appended to the exception’s
codicil without modifying it.

Parameters codicil (string or tuple of strings) – A codicil or collection of
codicils that is appended to the return value without modifying the cached codicil.

Returns The codicil argument is appended to the exception’s codicil and the combination
is returned. The return value is always in the form of a tuple even if there is only one
component.

5.10. Python API 93

https://github.com/KenKundert/inform#exception
https://github.com/KenKundert/inform#exception

Avendesora Documentation, Release 1.25

get_culprit(culprit=None)
Get the culprits.

Culprits are extra pieces of information attached to an error that help to identify the source of the error.
For example, file name and line number where the error was found are often attached as culprits.

Return the culprit as a tuple. If a culprit is specified as an argument, it is appended to the exception’s
culprit without modifying it.

Parameters culprit (string, number or tuple of strings and
numbers) – A culprit or collection of culprits that is appended to the return
value without modifying the cached culprit.

Returns The culprit argument is prepended to the exception’s culprit and the combination
is returned. The return value is always in the form of a tuple even if there is only one
component.

get_message(template=None)
Get exception message.

Parameters template (str) – This argument is treated as a format string and is passed
both the unnamed and named arguments. The resulting string is treated as the message
and returned.

If not specified, the template keyword argument passed to the exception is used. If there
was no template argument, then the positional arguments of the exception are joined
using sep and that is returned.

Returns The formatted message without the culprits.

render(template=None)
Convert exception to a string for use in an error message.

Parameters template (str) – This argument is treated as a format string and is passed
both the unnamed and named arguments. The resulting string is treated as the message
and returned.

If not specified, the template keyword argument passed to the exception is used. If there
was no template argument, then the positional arguments of the exception are joined
using sep and that is returned.

Returns The formatted message with any culprits.

report(**new_kwargs)
Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

Parameters **kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword argument specified here
overrides those that were specified when the exception was first raised.

reraise(**new_kwargs)
Re-raise the exception.

terminate(**new_kwargs)
Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

94 Chapter 5. Contents

Avendesora Documentation, Release 1.25

Parameters **kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword argument specified here
overrides those that were specified when the exception was first raised.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.10.3 Example: Displaying Account Values

The following example prints out all account values for account whose name are found in a list.

from avendesora import PasswordGenerator, PasswordError
from inform import display, indent

accounts = ['bank', 'credit-union', 'brokerage']

try:
pw = PasswordGenerator()

for account_name in accounts:
account = pw.get_account(account_name)
description = account.get_scalar('desc', None, account_name)
display(description, len(description)*'=', sep='\n')

for name, keys in account.get_fields():
if keys == [None]:

value = account.get_value(name)
display(value.render('{n}: {v}'))

else:
display(name + ':')
for key, value in account.get_values(name):

display(indent(
value.render(('{k}) {d}: {v}', '{k}: {v}'))

))
display()

except PasswordError as e:
e.terminate()

5.10.4 Example: Add SSH Keys

This example adds SSH keys to your SSH agent. It uses pexpect to manage the interaction between this script and
ssh-add.

A more advanced version of addsshkeys can be found on GitHub.

#!/usr/bin/env python3
"""
Add SSH keys

Add SSH keys to SSH agent.
The following keys are added: {keys}.

Usage:
addsshkeys [options]

(continues on next page)

5.10. Python API 95

https://github.com/KenKundert/addsshkeys

Avendesora Documentation, Release 1.25

(continued from previous page)

Options:
-v, --verbose list the keys as they are being added

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-add-ssh-keys>_.
"""
Assumes that the Avendesora account that contains the ssh key's passphrase
has a name or alias of the form <name>-ssh-key. It also assumes that the
account contains a field named 'keyfile' or 'keyfiles' that contains an
absolute path or paths to the ssh key files in a string.

from avendesora import PasswordGenerator, PasswordError
from inform import Inform, codicil, error, narrate
from docopt import docopt
from pathlib import Path
import pexpect

SSHkeys = 'primary github backups'.split()
SSHadd = 'ssh-add'

cmdline = docopt(__doc__.format(keys = ', '.join(SSHkeys)))
Inform(narrate=cmdline['--verbose'])

try:
pw = PasswordGenerator()

except PasswordError as e:
e.terminate()

for key in SSHkeys:
name = key + '-ssh-key'
try:

account = pw.get_account(name)
passphrase = str(account.get_passcode().value)
if account.has_field('keyfiles'):

keyfiles = account.get_value('keyfiles').value
else:

keyfiles = account.get_value('keyfile').value
for keyfile in keyfiles.split():

path = Path(keyfile).expanduser()
narrate('adding.', culprit=keyfile)
try:

sshadd = pexpect.spawn(SSHadd, [str(path)])
sshadd.expect('Enter passphrase for %s: ' % (path), timeout=4)
sshadd.sendline(passphrase)
sshadd.expect(pexpect.EOF)
sshadd.close()
response = sshadd.before.decode('utf-8')
if 'identity added' in response.lower():

continue
except (pexpect.EOF, pexpect.TIMEOUT):

pass
error('failed.', culprit=key)
codicil('response:', sshadd.before.decode('utf8'), culprit=SSHadd)
codicil('exit status:', sshadd.exitstatus , culprit=SSHadd)

except PasswordError as e:
e.report(culprit=key)

96 Chapter 5. Contents

Avendesora Documentation, Release 1.25

5.10.5 Example: Export to BitWarden

This program exports selected accounts from Avendesora to BitWarden. BitWarden is a multi-platform open-source
password manager. Using BitWarden you can extend the reach of Avendesora to your phone or other non-Unix plat-
form.

To use bw-export you would add a special field named bitwarden to those accounts that you wish to export. It must
contain a dictionary that gives the values of each of the fields exported for each account. For example:

bitwarden = dict(
type='login',
name='Andor Airlines',
login_uri='{urls}',
login_username='{email}',
login_password='{passcode}',
fields='account: {account}\ncustomer service: {customer_service}',

)

The exported fields are described on the BitWarden website. The values for the fields are either simple strings, as in
type and name, or Avendesora scripts, as in login_username and fields. Scripts allow you to interpolate Advendesora
account field value into BitWarden fields. Any field that is supported but not given will be blank.

This script produces a file named bw.csv that contains the exported accounts, It can be imported into BitWarden from
their website. You should delete any previously imported accounts before importing this file to avoid duplicates. You
should all take care to delete this file after you have completed the import as it contains the passcodes in plain text.

More advanced versions of this example script are available as bw-export from both GitHub and PyPI.

#!/usr/bin/env python3
Description
"""Export Accounts to BitWarden

Generates a CSV file (bw.csv) suitable for uploading to BitWarden.

Usage:
bw-export

Only those accounts with 'bitwarden' field are exported. The "bitwarden' field
is expected to be a dictionary that may contain the following fields: folder,
favorite, type, name, notes, fields, login_uri, login_username, login_password,
login_totp. If not given, they are left blank. Each value may be a simple string
or it may be a script.

Once created, it can be imported from the BitWarden website
(vault.bitwarden.com). You should delete existing accounts before re-importing
to avoid duplicate accounts. When importing, use 'Bitwarden (csv)' as the file
format.
"""

Imports
from avendesora import PasswordGenerator, PasswordError, Script
from inform import conjoin, os_error, terminate
from docopt import docopt
import csv

Globals
fieldnames='''

folder

(continues on next page)

5.10. Python API 97

https://help.bitwarden.com/article/import-data
https://github.com/KenKundert/bw-export

Avendesora Documentation, Release 1.25

(continued from previous page)

favorite
type
name
notes
fields
login_uri
login_username
login_password
login_totp

'''.split()
output_filename = 'bw.csv'

Program
try:

Read command line and process options
cmdline = docopt(__doc__)

Scan accounts and gather accounts to export
pw = PasswordGenerator()
accounts = {}
with open(output_filename, 'w', newline='') as csvfile:

writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()

visit each account
for account in pw.all_accounts():

account_name = account.get_name()
class_name = account.__name__
description = account.get_scalar('desc', None, None)

process bitwarden field if it exists
fields = account.get_composite('bitwarden')
if fields:

expand fields
for k, v in fields.items():

value = Script(v)
value.initialize(account)
fields[k] = str(value)

writer.writerow(fields)
os.chmod(output_filename, 0o600)

Process exceptions
except KeyboardInterrupt:

terminate('Killed by user.')
except PasswordError as e:

e.terminate()
except OSError as e:

terminate(os_error(e))

5.10.6 Example: Postmortem Summaries

This is a program that generates a summary of selected accounts for a person’s children and partners. It is assumed
that these messages would be placed into a safe place to be found and read upon the person’s death.

It examines all accounts looking for a special field, postmortem_recipients. If the field exists, then that account is
included in the file of accounts sent to that recipient. The script also looks for another special field, estimated_value.

98 Chapter 5. Contents

Avendesora Documentation, Release 1.25

It includes this value in the message and prints the values to the standard output when generating the messages. This
gives you a chance to review the values and update them if they are stale. The generated files are encrypted so that
only the intended recipients can read them.

Here is an example of the fields you would add to an account to support postmortem:

postmortem_recipients = 'kids'
estimated_value = dict(

updated = 'January 2019',
equities = '$23k',
cash = '$1.7k',
retirement = '$41,326'

)

The estimated_value field should be a dictionary where one item is ‘updated’, which contains the date of when the
values were last updated, and the remaining items should give an investment class and value. The values may be
specified as strings (commas, units and SI scale factors allowed) or as a real number or expression.

You configure postmortem by creating ~/.config/postmortem/config. This file contains Python code that specifies the
various settings. At a minimum it should include the GPG IDs for yourself and your recipients. For example:

my_gpg_ids = 'morgase@andor.gov'
recipients = dict(

kids='galad@trakand.name gawyn@trakand.name elayne@trakand.name',
partners='taringail.damodred@andor.gov',

)

A more advanced version of postmortem. can be found on GitHub.

#!/usr/bin/env python3

Description
"""Postmortem

Generate an account summary that includes complete account information,
including secrets, for selected accounts. This summary should allow the
recipients to access your accounts. The summaries are intended to be given to
the recipients after you die.

Usage:
postmortem [options] [<recipients>...]

Choose from: {available}. If no recipients are specified, then summaries will
be generated for all recipients.

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-postmortem-summaries>_.
"""

Imports
from avendesora import PasswordGenerator, PasswordError
from avendesora.gpg import PythonFile
from inform import (

Error, conjoin, cull, display, indent, os_error, terminate, warn
)
from docopt import docopt
from appdirs import user_config_dir
from pathlib import Path

(continues on next page)

5.10. Python API 99

https://github.com/KenKundert/postmortem

Avendesora Documentation, Release 1.25

(continued from previous page)

import gnupg

Settings
prog_name = 'postmortem'
config_filename = 'config'

these can be overridden in the settings file: ~/.config/postmortem
my_gpg_ids = ''
recipients = dict()
avendesora_value_fieldname = 'estimated_value'
avendesora_recipients_fieldname = 'postmortem_recipients'

try:
Read settings
config_filepath = Path(user_config_dir(prog_name), config_filename)
if config_filepath.exists():

settings = PythonFile(config_filepath)
settings.initialize()
locals().update(settings.run())

else:
warn('no configuration file found.')

Read command line and process options
cmdline = docopt(__doc__.format(available=conjoin(recipients)))
who = cmdline['<recipients>']
if not who:

who = recipients

Scan accounts and gather information for recipients
pw = PasswordGenerator()
accounts = {}
for account in pw.all_accounts():

account_name = account.get_name()
class_name = account.__name__
description = account.get_scalar('desc', None, None)

summarize account values
data = account.get_composite(avendesora_value_fieldname)
postmortem_recipients = account.get_scalar(avendesora_recipients_fieldname,

→˓default=None)
if data and not postmortem_recipients:

warn('no recipients.', culprit= account.get_name())
continue

if not postmortem_recipients:
continue

postmortem_recipients = postmortem_recipients.split()

gather information for recipients
for recipient in recipients:

if recipient in postmortem_recipients:
output title
title = ' - '.join(cull([class_name, description]))
lines = [title, len(title)*'=']

output avendesora names
aliases = account.get_composite('aliases')
names = [account_name] + (aliases if aliases else [])

(continues on next page)

100 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

lines.append('avendesora names: ' + ', '.join(names))

output user fields
for name, keys in account.get_fields():

if name in [avendesora_recipients_fieldname, 'desc', 'NAME']:
continue

if keys == [None]:
value = account.get_value(name)
lines += value.render('{n}: {v}').split('\n')

else:
lines.append(name + ':')
for key, value in account.get_values(name):

lines += indent(
value.render(('{k}) {d}: {v}', '{k}: {v}'))

).split('\n')
if recipient not in accounts:

accounts[recipient] = []
accounts[recipient].append('\n'.join(lines))

generate encrypted files than contain about accounts for each recipient
gpg = gnupg.GPG(gpgbinary='gpg2')
for recipient, idents in recipients.items():

if recipient in accounts:
content = accounts[recipient]
num_accounts = len(content)
encrypted = gpg.encrypt(

'\n\n\n'.join(content),
idents.split() + my_gpg_ids.split()

)
if not encrypted.ok:

raise Error(
'unable to encrypt:', encrypted.stderr, culprit=recipient

)
try:

filename = recipient + '.gpg'
with open(filename, 'w') as file:

file.write(str(encrypted))
display(f'contains {num_accounts} accounts.', culprit=filename)

except OSError as e:
raise Error(os_error(e))

else:
warn('no accounts found.', culprit=recipient)

process exceptions
except KeyboardInterrupt:

terminate('Killed by user.')
except (PasswordError, Error) as e:

e.terminate()

5.10.7 Example: Net Worth

If you have added estimated_value to all of your accounts that hold significant value as proposed in the previous
example, then networth summarizes the values and estimates your net worth.

You configure networth by creating ~/.config/networth/config. This file contains Python code that specifies the various

5.10. Python API 101

Avendesora Documentation, Release 1.25

settings. You do not need this file, but there is a few things you might wish to configure with this file. First, you can
arrange to report the networth of multiple people. Generally you would be interested in your own networth, but you
might also be interested in the networth of someone such as a child or a parent if you are their financial custodian.
Second, you can rename accounts if you have obscure or excessively long account names. Finally, you can add a list
of cryptocurrencies, in which case networth will download the latest prices to give you an up-to-date view of your
networth.

Here is an example of what your configuration file might look like.

default_who='me'

avendesora_fieldnames = dict(
me='estimated_value',
parents='parents_estimated_value',

)

aliases = dict(
me = {

'princeton-capital': 'home mortgage',
},
parents = {

'parents-bankamerica': 'bank america',
'parents-schwab': 'schwab',
'premierlending': 'home mortgage',

}
)

coins = 'BTC ETH'.split()

bar settings
screen_width = 110

A more advanced version of networth can be found on GitHub.

#!/usr/bin/env python3
Description
"""Networth

Show a summary of the networth of the specified person.

Usage:
networth [options] [<profile>]

Options:
-u, --updated show the account update date rather than breakdown

{available_profiles}
Settings can be found in: {settings_dir}.
Typically there is one file for generic settings named 'config' and then one
file for each profile whose name is the same as the profile name with a '.prof'
suffix. Each of the files may contain any setting, but those values in 'config'
override those built in to the program, and those in the individual profiles
override those in 'config'. The following settings are understood. The values
are those before an individual profile is applied.

Profile values:
default_profile = {default_profile}

(continues on next page)

102 Chapter 5. Contents

https://github.com/KenKundert/networth

Avendesora Documentation, Release 1.25

(continued from previous page)

Account values:
avendesora_fieldname = {avendesora_fieldname}
value_updated_subfieldname = {value_updated_subfieldname}
date_formats = {date_formats}
max_account_value_age = {max_account_value_age} (in days)
aliases = {aliases}

(aliases is used to fix account names to make them more readable)

Cryptocurrency values:
coins = {coins}
prices_filename = {prices_filename}
max_coin_price_age = {max_coin_price_age} (in seconds)

Bar graph values:
screen_width = {screen_width}
asset_color = {asset_color}
debt_color = {debt_color}

The prices and log files can be found in {cache_dir}.

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-net-worth>`_.
"""

Imports
from avendesora import PasswordGenerator, PasswordError
from avendesora.gpg import PythonFile
from inform import (

conjoin, display, done, error, fatal, is_str, join, narrate, os_error,
render_bar, terminate, warn, Color, Error, Inform,

)
from quantiphy import Quantity
from docopt import docopt
from appdirs import user_config_dir, user_cache_dir
from pathlib import Path
import arrow

Settings
These can be overridden in ~/.config/networth/config
prog_name = 'networth'
config_filename = 'config'

Avendesora settings
default_profile = 'me'
avendesora_fieldname = 'estimated_value'
value_updated_subfieldname = 'updated'
aliases = {}

cryptocurrency settings (empty coins to disable cryptocurrency support)
proxy = None
prices_filename = 'prices'
coins = None
max_coin_price_age = 86400 # refresh cache if older than this (seconds)

bar settings
screen_width = 79
asset_color = 'green'

(continues on next page)

5.10. Python API 103

Avendesora Documentation, Release 1.25

(continued from previous page)

debt_color = 'red'
currently we only colorize the bar because ...
- it is the only way of telling whether value is positive or negative
- trying to colorize the value really messes with the column widths and is
not attractive

date settings
date_formats = [

'MMMM YYYY',
'YYMMDD',

]
max_account_value_age = 120 # days

Utility functions
get the age of an account value
def get_age(date, profile):

if date:
for fmt in date_formats:

try:
then = arrow.get(date, fmt)
age = arrow.now() - then
return age.days

except:
pass

warn(
'could not compute age of account value',
'(updated missing or misformatted).',
culprit=profile

)

colorize text
def colorize(value, text = None):

if text is None:
text = str(value)

return debt_color(text) if value < 0 else asset_color(text)

try:
Initialization
settings_dir = Path(user_config_dir(prog_name))
cache_dir = user_cache_dir(prog_name)
Quantity.set_prefs(prec=2)
Inform(logfile=Path(cache_dir, 'log'))
display.log = False # do not log normal output

Read generic settings
config_filepath = Path(settings_dir, config_filename)
if config_filepath.exists():

narrate('reading:', config_filepath)
settings = PythonFile(config_filepath)
settings.initialize()
locals().update(settings.run())

else:
narrate('not found:', config_filepath)

Read command line and process options
available=set(p.stem for p in settings_dir.glob('*.prof'))

(continues on next page)

104 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

available.add(default_profile)
if len(available) > 1:

choose_from = f'Choose <profile> from {conjoin(sorted(available))}.'
default = f'The default is {default_profile}.'
available_profiles = f'{choose_from} {default}\n'

else:
available_profiles = ''

cmdline = docopt(__doc__.format(

**locals()
))
show_updated = cmdline['--updated']
profile = cmdline['<profile>'] if cmdline['<profile>'] else default_profile
if profile not in available:

fatal(
'unknown profile.', choose_from, template=('{} {}', '{}'),
culprit=profile

)

Read profile settings
config_filepath = Path(user_config_dir(prog_name), profile + '.prof')
if config_filepath.exists():

narrate('reading:', config_filepath)
settings = PythonFile(config_filepath)
settings.initialize()
locals().update(settings.run())

else:
narrate('not found:', config_filepath)

Process the settings
if is_str(date_formats):

date_formats = [date_formats]
asset_color = Color(asset_color)
debt_color = Color(debt_color)

Get cryptocurrency prices
if coins:

import requests

cache_valid = False
cache_dir = Path(cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)
prices_cache = Path(cache_dir, prices_filename)
if prices_cache and prices_cache.exists():

now = arrow.now()
age = now.timestamp - prices_cache.stat().st_mtime
cache_valid = age < max_coin_price_age

if cache_valid:
contents = prices_cache.read_text()
prices = Quantity.extract(contents)
narrate('coin prices are current:', prices_cache)

else:
narrate('updating coin prices')
download latest asset prices from cryptocompare.com
currencies = dict(

fsyms=','.join(coins), # from symbols
tsyms='USD', # to symbols

(continues on next page)

5.10. Python API 105

Avendesora Documentation, Release 1.25

(continued from previous page)

)
url_args = '&'.join(f'{k}={v}' for k, v in currencies.items())
base_url = f'https://min-api.cryptocompare.com/data/pricemulti'
url = '?'.join([base_url, url_args])
try:

r = requests.get(url, proxies=proxy)
except KeyboardInterrupt:

done()
except Exception as e:

must catch all exceptions as requests.get() can generate
a variety based on how it fails, and if the exception is not
caught the thread dies.
raise Error('cannot access cryptocurrency prices:', codicil=str(e))

try:
data = r.json()

except:
raise Error('cryptocurrency price download was garbled.')

prices = {k: Quantity(v['USD'], '$') for k, v in data.items()}

if prices_cache:
contents = '\n'.join('{} = {}'.format(k,v) for k,v in
prices.items())
prices_cache.write_text(contents)
narrate('updating coin prices:', prices_cache)

prices['USD'] = Quantity(1, '$')
else:

prices = {}

Build account summaries
narrate('running avendesora')
pw = PasswordGenerator()
totals = {}
accounts = {}
total_assets = Quantity(0, '$')
total_debt = Quantity(0, '$')
grand_total = Quantity(0, '$')
width = 0
for account in pw.all_accounts():

get data
data = account.get_composite(avendesora_fieldname)
if not data:

continue
if type(data) != dict:

error(
'expected a dictionary.',
culprit=(account_name, avendesora_fieldname)

)
continue

get account name
account_name = account.get_name()
account_name = aliases.get(account_name, account_name)
account_name = account_name.replace('_', ' ')
width = max(width, len(account_name))

(continues on next page)

106 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

sum the data
updated = None
contents = {}
total = Quantity(0, '$')
odd_units = False
for k, v in data.items():

if k == value_updated_subfieldname:
updated = v
continue

if k in prices:
value = Quantity(v*prices[k], prices[k])
k = 'cryptocurrency'

else:
value = Quantity(v, '$')

if value.units == '$':
total = total.add(value)

else:
odd_units = True

contents[k] = value.add(contents.get(k, 0))
width = max(width, len(k))

for k, v in contents.items():
totals[k] = v.add(totals.get(k, 0))

generate the account summary
age = get_age(data.get(value_updated_subfieldname), account_name)
if show_updated:

desc = updated
else:

desc = ', '.join('{}={}'.format(k, v) for k, v in contents.items() if v)
if len(contents) == 1 and not odd_units:

desc = k
if age and age > max_account_value_age:

desc += f' ({age//30} months old)'
accounts[account_name] = join(

total, desc.replace('_', ' '),
template=('{:7q} {}', '{:7q}'), remove=(None,'')

)

sum assets and debts
if total > 0:

total_assets = total_assets.add(total)
else:

total_debt = total_debt.add(-total)
grand_total = grand_total.add(total)

Summarize by account
display('By Account:')
for name in sorted(accounts):

summary = accounts[name]
display(f'{name:>{width+2}s}: {summary}')

Summarize by investment type
display('\nBy Type:')
largest_share = max(v for v in totals.values() if v.units == '$')
barwidth = screen_width - width - 18
for asset_type in sorted(totals, key=lambda k: totals[k], reverse=True):

value = totals[asset_type]
(continues on next page)

5.10. Python API 107

Avendesora Documentation, Release 1.25

(continued from previous page)

if value.units != '$':
continue

share = value/grand_total
bar = colorize(value, render_bar(value/largest_share, barwidth))
asset_type = asset_type.replace('_', ' ')
display(f'{asset_type:>{width+2}s}: {value:>7s} ({share:>5.1%}) {bar}')

display(
f'\n{"TOTAL":>{width+2}s}:',
f'{grand_total:>7s} (assets = {total_assets}, debt = {total_debt})'

)

Handle exceptions
except OSError as e:

error(os_error(e))
except KeyboardInterrupt:

terminate('Killed by user.')
except (PasswordError, Error) as e:

e.terminate()
done()

Here is a typical output of this script:

By Account:
betterment: $22k equities=$9k, cash=$3k, retirement=$9k

chase: $7k cash
southwest: $0 miles=78kmiles
coindesk: $15.3k cryptocurrency

By Type:
cryptocurrency: $15.3k (35.3%)

cash: $10k (23.1%)
equities: $9k (20.8%)

retirement: $9k (20.8%)

TOTAL: $43.3k (assets = $43.3k, debt = $0)

5.11 Examples

5.11.1 Challenge Questions

Websites originally used challenge questions to allow you to re-establish your identity if you lose your user name or
password, so it was enough to simply save the answers so that they were available if needed. But now many websites
require you to answer the challenge questions if the site does not recognize your browser because your cookie expired
or was deleted. As such, people need to answer their challenge questions with much more frequency. Generally the
site will save your answers to 4 or 5 challenge questions, and will present you with 1 or 2 at random. You must
answer them correctly before you are allowed to login. To accommodate these needs, Avendesora saves the challenge
questions and either stores or generates the answers. It is also makes it easy for you to autotype the answer to any of
your questions.

The following shows how to configure an account to support challenge questions.

class BankOfAmerica(Account):
aliases = 'boa bankamerica'

(continues on next page)

108 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

username = 'matrim'
passcode = PasswordRecipe('12 2l 2u 2d 2s')
questions = [

Question('elementary school?'),
Question('favorite foreign city?'),
Question('first pet?'),
Question('what year was your father born?'),
Question('favorite movie?'),

]
discovery = [

RecognizeURL(
'https://www.bankofamerica.com/',
script='{username}{tab}{passcode}{return}'

),
RecognizeURL(

'https://secure.bankofamerica.com',
script='{questions}{tab}',

),
]

In this case 5 questions are supported. When you are first required to set up your challenge questions the website
generally presents you with 20 or 30 to choose form. Simply choose the first few and add them to your account.

Then use the value command to generate the answers and copy them into the website. You need not enter the questions
into Avendesora exactly, but once you provide your website with the generated answers you must not change the ques-
tions in any way because doing so would change the answers. Finally, the first time you are required to enter answers
to the challenge questions, take note of the URL and add a discovery entry that matches the url and generates the
questions. In most cases you will not be able to specify a single question, so simply specify the array and Avendesora
will allow you to choose a particular question when you request an answer. Specifically, when the website takes you to
the challenge question page, click in the field for the first answer and type the hotkey that runs Avendesora in autotype
mode. Avendesora should recognize the page and allow you to identify the question. It will then autotype the answer
into the field and then move to the next field. Alternately, if you terminate the script with ‘{return}’ rather than ‘{tab}’,
it will take you to the next page.

In some cases the website makes you choose from a fixed set of answers. In this case you would save the answer with
the question as follows:

class BankOfAmerica(Account):
...
questions = [

Question('elementary school?', answer='MLK Elementary'),
Question('favorite foreign city?', answer='Kashmir'),
Question('first pet?', answer='Spot'),
Question('what year was your father born?', answer='1950'),
Question('favorite movie?', answer='A boy and his dog'),

]
...

5.11.2 Two Page Authentication

A new trend in recent years is websites that use two-page authentication. This is where you enter your user name
or email on one page, you then submit it and get another page that you use to enter your password, which requires a
second submission. Google moved to two-page authentication some time ago, and now Amazon seems to be switching
as well. Originally this was intended as an anti-phishing strategy. After entering your user name you are shown a site
image and phrase that you can use to confirm that you are logging in to the correct site. This is unnecessary when

5.11. Examples 109

Avendesora Documentation, Release 1.25

using RecognizeURL because it will only enter your user name and password if the URL is correct. Recently however,
sites have dispensed with the site image and phrase, but still spread the login in process over two pages. It is not clear
why they do this. There does not seem to be any security benefit. In fact it acts to reduce security by making it more
difficult to use a password manager. Unfortunately this is all too common. Companies talk a good game when it comes
to security, but all to often employ practices that are antithetical to good security.

There are two approaches to handling two-page authentication in Avendesora. The first would be to split the account
discovery into two steps. For example:

class Gmail(Account):
aliases = 'email'
username = 'matrim.cauthon'
passcode = Passphrase()
urls = 'https://accounts.google.com/signin/v2/identifier'
discovery = [

RecognizeURL(
'https://accounts.google.com/ServiceLogin/identifier',
'https://accounts.google.com/signin/v2/identifier',
script='{username}{return}',
name='username',

),
RecognizeURL(

'https://accounts.google.com/signin/v2/sl/pwd',
script='{passphrase}{return}',
name='passcode',

),
]

Notice that there are two instances of RecognizeURL, both looking for different URLs. You would trigger Avendesora
to enter the user name, then trigger it again to enter the passcode. This is the best case situation in that the URLs for
each page are distinct. However, some sites make it difficult to distinguish what is being asked for just by looking at
the URL. Amazon is one of those:

class Amazon(Account):
email = 'matrim@tworivers.com'
passcode = Passphrase()
discovery = [

RecognizeURL(
'https://www.amazon.com/ap/signin',
script = '{email}{return}',
name = 'email',

),
RecognizeURL(

'https://www.amazon.com/ap/signin',
script = '{passcode}{return}',
name = 'passcode',

),
]

Notice that the URL is the same for both recognizers, which causes Avendesora to ask you which you want each time
you request either. A variation on this is to have different URLs for each page, but one URL is a subset of the other. For
example, ‘andorsavings.com/signin’ and ‘andorsavings.com/signin/pwd’. By default Avendesora will offer both when
it comes time to enter the password, but adding ‘exact_path=True’ to the username recognizer causes Avendesora to
be more selective.

The second approach is use just one recognizer that outputs both the user name and password, but to add a delay
between them. For example:

110 Chapter 5. Contents

Avendesora Documentation, Release 1.25

class Amazon(Account):
email = 'amazon@shalmirane.com'
passcode = Passphrase()
discovery = [

RecognizeURL(
'https://www.amazon.com/ap/signin',
script = '{email}{return}{sleep 2}{passcode}{return}',
name = 'both',

),
]

In this way you would only need to trigger Avendesora once. You might have to adjust the sleep time to be able to log
in reliably.

Chrome

The Chrome browser seems to have a bug that can interfere with its use with account discovery. In the two step process
used when logging in, the site might pre-fill-in your user name so you do not have to enter it explicitly, you just have
to click next. Chrome then takes you to the page where you are expected to enter your password, however when it
does so it does not update the window title to match the new page. Then Avendesora sees the wrong URL and either
enters the wrong thing or does not recognize the page. To work around this bug, you must refresh the page when you
land on the password page before activating Avendesora.

5.11.3 Wireless Router

Wireless routers typically have two or more secrets consisting of the admin password and the passwords for one or
more wireless networks. For example, the router in this example supports two networks, a privileged network that
allows connections to the various devices on the local network and the guest network that that only access to the
internet. In this case all three employ pass phrases. The admin password is held in passcode and the network names
and passwords are held in the network_passwords array. To make the information about each network easy to access
from the command line, two scripts are defined, guest and privileged, and each produces both the network name and
the network password for the corresponding networks.

Secret discovery handles two distinct cases. The first case is when from within your browser you navigate to your
router (ip=192.168.1.1). In this situation, the URL is matched and the script is run that produces the administrative
username and password. The second case is when you attempt to connect to a wireless network and a dialog box pops
up requesting the SSID and password of the network you wish to connect to. Running xwininfo shows that the title of
the dialog box is ‘Wi-Fi Network Authentication Required’. When this title is seen, both the title recognizers match,
meaning that both the privileged and the guest credentials are offered as choices.

class NetgearAC1200_WirelessRouter(Account):
NAME = 'home-router'
aliases = 'wifi'
admin_username = 'admin'
admin_password = Passphrase()
default = 'admin_password'
networks = ["Occam's Router", "Occam's Router (guest)"]
network_passwords = [Passphrase(), Passphrase()]
privileged = Script('SSID: {networks.0}{return}password: {network_passwords.0}')
guest = Script('SSID: {networks.1}{return}password: {network_passwords.1}')
discovery = [

RecognizeURL(
'http://192.168.1.1',
script='{admin_username}{tab}{admin_password}{return}'

(continues on next page)

5.11. Examples 111

Avendesora Documentation, Release 1.25

(continued from previous page)

),
RecognizeTitle(

'Wi-Fi Network Authentication Required',
script='{networks.0}{tab}{network_passwords.0}{return}',
name='privileged network'

),
RecognizeTitle(

'Wi-Fi Network Authentication Required',
script='{networks.1}{tab}{network_passwords.1}{return}',
name='guest network'

),
]
model_name = "Netgear AC1200 wireless router"

5.11.4 Credit Card Information

Many websites offer to store your credit card information. Of course, we have all heard of the massive breeches that
have occurred on such websites, often resulting in the release of credit card information. So all careful denizens of the
web are reluctant to let the websites keep their information. This results in you being forced into the tedious task of
re-entering this information.

Avendesora can help with this. If you have a website that you find yourself entering credit card information into
routinely, then you can use the account discovery and autotype features of Avendesora to enter the information for
you.

For example, imagine that you have a Citibank credit card that you use routinely on the Costco website. You can
configure Avendesora to automatically enter your credit card information into the Costco site with by adding an
account discovery entry to your Citibank account as follows:

class CostcoCitiVisa(Account):
aliases = 'citi costcovisa'
username = 'mcauthon'
email = 'matrim@gmail.com'
account = '1234567889012345'
expiration = '03/2019'
cvv = '233'
passcode = PasswordRecipe('12 2u 2d 2s')
verbal = Question('Favorite pet?', length=1)
questions = [

Question("Fathers profession?"),
Question("Last name of high school best friend?"),
Question("Name of first pet?"),

]
urls = 'https://online.citi.com'
discovery = [

RecognizeURL(
'https://online.citi.com',
script='{username}{tab}{passcode}{return}',
name='login'

),
RecognizeURL(

'https://www.costco.com/CheckoutPaymentView',
script='{account}{tab}{expiration}{tab}{cvv}{tab}Matrim Cauthon{return}',
name='card holder information'

(continues on next page)

112 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

),
]

This represents a relatively standard Avendesora description of an account. Notice that it contains the credit card
number (account), the expiration date (expiration) and the CVV number (cvv). This is raw information the autotype
script will pull from. The credit card and the CVV values are sensitive information and should probably be concealed.

Also notice the two avendesora.RecognizeURL entries in discovery. The first recognizes the CitiBank website.
The second recognizes the Costco check-out page. When it does, it runs the following script:

{account}{tab}{expiration}{tab}{cvv}{tab}Matrim Cauthon{return}

That script enters the account number, tabs to the next field, enters the expiration date, tabs to the next field, enters the
CVV, tabs to the next field, enters the account holders name, and finally types return to submit the information (you
might want to delete the {return} so that you have a chance to review all the information before you submit manually.
Or you could continue the script and give more information, such as billing address.

Conceptually this script should work, but Costco, like many websites, uses Javascript helpers to interpret the fields.
These helpers are intended to give you immediate feedback if you typed something incorrectly, but they are slow and
can get confused if you type too fast. As is, the first one or two fields would be entered properly, but the rest would be
empty because they were entered by Avendesora before the page was ready for them. To address this issue, you can
put delays in the script:

{account}{tab}{sleep 0.5}{expiration}{tab}{sleep 0.5}{cvv}{tab}{sleep 0.5}Matrim
→˓Cauthon{return},

Now the account can be given in its final form. This differs from the one above in that the account and cvv values are
concealed and the delays were added to the Costco script.

class CostcoCitiVisa(Account):
aliases = 'citi costcovisa'
username = 'mcauthon'
email = 'matrim@gmail.com'
account = Hidden('MTIzNCA1Njc4IDg5MDEgMjM0NQ==')
expiration = '03/2019'
cvv = Hidden('MjMz')
passcode = PasswordRecipe('12 2u 2d 2s')
verbal = Question('Favorite pet?', length=1)
questions = [

Question("Fathers profession?"),
Question("Last name of high school best friend?"),
Question("Name of first pet?"),

]
discovery = [

RecognizeURL(
'https://online.citi.com',
script='{username}{tab}{passcode}{return}',
name='login'

),
RecognizeURL(

'https://www.costco.com/CheckoutPaymentView',
script='{account}{tab}{sleep 0.5}{expiration}{tab}{sleep 0.5}{cvv}{tab}

→˓{sleep 0.5}Matrim Cauthon{return}',
name='card holder information'

),
]

5.11. Examples 113

Avendesora Documentation, Release 1.25

This approach requires that you anticipate those sites into which you well enter the credit card information. Alterna-
tively, you add a script to your credit card account that outputs the credit card information, and then run Avendesora
in such a way that the credit card information into the webpage. To do this requires two things. First, add a script to
the account that combines and outputs the credit card information. For example:

ccn = Script('{account}{tab}{cvv}{tab}')

In this case the amount of information requested is limited to increase the chance that the result will be compatible
with a large number of websites. Then run Avendesora from the window manager:

Alt-F2 avendesora citi ccn

Here, Alt-F2 is the hot key Gnome uses to execute a command. This causes Avendesora to run the ccn script. Since
Avendesora running from the window manager does not have access to a TTY it will instead mimic the keyboard and
autotype the credit card information into the active window.

Alternately, if you did not set up the ccn script, you can simply request the individual fields. For example, to enter the
account number into a field use:

Alt-F2 avendesora citi account

Then to enter the CVV use:

Alt-F2 avendesora citi cvv

The expiration date is difficult to enter in this way because there is so much variation in the way that websites expect
the date to be entered, and they often expect drop-downs rather than simple typing.

5.11.5 Swarm Accounts

You might find the need to have many accounts at one website, and for simplicity would like to share most of the
account information. For example, you would share the URL and perhaps the password, but not the usernames.

You might wish to have multiple email addresses from a single email provider like gmail, or perhaps you you would
multiple accounts at a review site, like yelp.

In this case we give the list of account name in the usernames attribute. Then we use Python list comprehensions that
use the usernames array to construct other values. That way to add a new account, you only need modify usernames
and everything else is updated automatically.

class YandexMail(Account):
aliases = 'yandex'
usernames = 'rand.alThor aviendha rhuarc sorilea amys'.split()
credentials = ' '.join(

['usernames.%d' % i for i in range(len(usernames))] + ['passcode']
)
email = [n + '@yandex.com' for n in usernames]
passcode = PasswordRecipe('12 2u 2d 2s')
questions = [

Question('Surname of favorite musician?'),
]
urls = 'https://mail.yandex.com'
discovery = [

RecognizeURL(
'https://mail.yandex.com',
script='{email[%s]}{tab}{passcode}{return}' % i,

(continues on next page)

114 Chapter 5. Contents

Avendesora Documentation, Release 1.25

(continued from previous page)

name=n,
) for i, n in enumerate(usernames)

]

Now, running the credentials command gives:

> avendesora yandex
usernames: rand.alThor
usernames: aviendha
usernames: rhuarc
usernames: sorilea
usernames: amys
passcode: B-F?i0z8GcDL

This example shows that the capabilities of the Python language can be used in the accounts files to increase the
capabilities of Avendesora in unexpected ways.

5.11.6 Recognizing Shell Commands

Modern shells inform their terminal emulator of the currently running command. Modern terminal emulators then use
that information to display the command in the window title. Generally this happens automatically, but if it is not
working for you, you may have to manually configure your shell. Generally, you configure the shell by changing the
value of the variable that sets the command prompt.

If your window manager is configured to not show window titles, you can still determine the title using xwininfo.

If your shell does not set the window title you can still use the window title to trigger Avendesora secrets recognition
by explicitly setting the window title using xdotool. For example:

#!/bin/bash

original_title=`xdotool getactivewindow getwindowname`
xdotool getactivewindow set_window --name 'Home email'
mutt -F ~/.config/mutt/home
xdotool getactivewindow set_window --name "$original_title"

Once you have desired information in the window title, you can use the use avendesora.RecognizeTitle to
trigger Avendesora. For example, you might use the following as the entry for you Linux password:

class Login(Account):
desc = 'Linux login'
aliases = 'linux sudo'
passcode = Passphrase()
discovery = RecognizeTitle(

'sudo *',
script='{passcode}{return}'

)

You cannot use Avendesora to login to Linux, however once you have logged in you can use Avendesora to deliver
your linux password to the sudo command.

An alternative to using window titles is to trigger Avendesora secrets recognition is to use avendesora.
RecognizeFile as shown in Account Discovery.

5.11. Examples 115

Avendesora Documentation, Release 1.25

5.12 Accessories

A collection companion programs have been developed that work with Avendesora to provide additional useful capa-
bilities.

5.12.1 AddSSHkeys

An Avendesora accessory that allows you to load all of your keys into the SSH agent with one simple command.

AddSSHkeys

5.12.2 Avendesora Export

An Avendesora accessory that exports selected accounts to an Avendesora installation on a different host. In this way
you can easily maintain satellite installations that provide only the accounts needed on that host.

avendesora-export

5.12.3 BitWarden Export

Allows you to export select accounts to BitWarden, an open source password manager with a GUI, phone apps, and
syncing.

bw-export

5.12.4 Emborg

A front-end for BorgBackup that makes it easy to manage your backups interactively from the command line.

Emborg

5.12.5 Networth

An Avendesora accessory that allows you to track and summarize your net worth.

Networth

5.12.6 PostMortem

An Avendesora accessory that allows send account information to your partners to give them the information they need
to manage your affairs if you die or become disabled.

PostMortem

5.12.7 SpareKeys

Spare Keys makes and distributes encrypted copies of the files that you would need to recover from a catastrophic hard
drive failure, e.g. SSH keys, GPG keys, password vaults, encryption keys for backups, etc.

SpareKeys

116 Chapter 5. Contents

https://github.com/KenKundert/addsshkeys
https://github.com/KenKundert/avendesora-export
https://bitwarden.com
https://github.com/KenKundert/bw-export
https://borgbackup.readthedocs.io/en/stable
https://github.com/KenKundert/emborg
https://github.com/KenKundert/networth
https://github.com/KenKundert/postmortem
https://github.com/kalekundert/sparekeys

Avendesora Documentation, Release 1.25

5.13 Known Issues

5.13.1 Spotty Account Recognition

When using account discovery you may find that sometimes accounts do not get recognized but other times they do.
There are two causes for this. Account recognition is based on the window title, and browsers tend not to update
the window title until the page is completely loaded. So generally intermittent account recognition occurs because
you trigger Avendesora before the page has completed loaded. This problem is aggravated with modern websites
because they often continue loading images, scripts, advertisements, etc. even after the page initially renders. You can
generally work around this issue by simply hitting the stop button on the browser or by typing the ESC key, which
should do the same thing.

The second cause is a bit more problematic. The Chrome browser, or perhaps the URL in Title extension, seems to
have a bug that interferes with its use with account discovery, and ironically it tends to interfere when logging into
your Google accounts. The problem is that in some cases Chrome does not update its title when you navigate to a new
but related page; the title from the previous page persists. This can occur if you give the URL for a particular service,
like gmail.com or tv.youtube.com, and you get forwarded to the generic login page. It can also happen during the two
step login process used when logging in where the title occasionally does not update as you go from the username
page to the password page. In these cases Avendesora sees the wrong URL and either enters the wrong thing or does
not recognize the page. Generally, refreshing the page allows you to work around this bug.

5.13.2 Reporting Issues

If you discover any issues with Avendesora, or have some suggestions, or simply want to help out, please visit Aven-
desora issues.

5.14 Upgrading

Avendesora is primarily a password generator. As a result, there is always a chance that something could change in the
password generation algorithm that causes the generated passwords to change. Of course, the program is thoroughly
tested to assure this does not happen, but there is still a small chance that something slips through. To assure that you
are not affected by this, you should archive your passwords before you upgrade with:

avendesora changed
avendesora archive

The changed command should always be run before an archive command. It allows you to review all the changes
that have occurred so that you can verify that they were all intentional. Once you are comfortable, run the archive
command to save all the changes. This creates a file (~/.config/avendesora/archive.gpg) that contains all of your
account information, including the secrets. Be sure to keep it safe.

Once you have created/updated your archive, you can upgrade Avendesora with:

pip install -upgrade --user avendesora

Finally, run:

avendesora version

to confirm that your version of Avendesora was updated and:

avendesora changed

5.13. Known Issues 117

https://github.com/KenKundert/avendesora/issues
https://github.com/KenKundert/avendesora/issues

Avendesora Documentation, Release 1.25

to confirm that none of your generated passwords have changed.

It is a good idea to run ‘avendesora changed’ and ‘avendesora archive’ on a routine basis to keep your archive up to
date. Doing so can help protect you against common mistake you might make.

Upon updating you may find that Avendesora produces a message that a ‘hash’ has changed. This is an indication that
something has changed in the program that could affect the generated secrets. Again, care is taken when developing
Avendesora to prevent this from happening. But it is an indication that you should take extra care. Specifically you
should follow the above procedure to assure that the value of your generated secrets have not changed. Once you
have confirmed that the upgrade has not affected your generated secrets, you should follow the directions given in the
warning and update the appropriate hash contained in ~/.config/avendesora/.hashes.

5.15 Releases

5.15.1 Latest Development Version

Version: 1.25
Released: 2023-04-22

5.15.2 1.25 (2023-04-22)

• minor refinements.

5.15.3 1.24 (2022-11-04)

• minor refinements.

5.15.4 1.23 (2022-08-31)

• enhanced bw-export scripts.

• with value command, only the first few characters of the field name need be specified.

• when ? is passed as field to the value command, the list of available fields is displayed.

• added additional_account_templates setting.

5.15.5 1.22 (2021-11-10)

• Allow remind commands in Script.

5.15.6 1.21 (2021-08-08)

• Added fold_level to Account.export().

• Added paste attribute to scripts that might help avoid captchas.

118 Chapter 5. Contents

Avendesora Documentation, Release 1.25

5.15.7 1.20 (2021-02-13)

• added hidden_fields setting.

5.15.8 1.19 (2021-01-03)

• Make OTP less persnickety about form of shared secrets.

• Automatically fix file permission issues when found.

5.15.9 1.18 (2020-11-12)

• Deprecate Python 2.7 and Python 3.5.

• Add PasswordGenerator.get_value(), a method of getting an account value from a string that in-
cludes the account and field names.

• Add hidden account attributes.

• Require secondary arguments on secrets to be passed by name.

• Renamed alphabet argument to Passphrase and Question to dictionary.

Warning: This change is not backward compatible and may require you to change entries in your
account files.

• This release requires secrets_hash to be updated.

5.15.10 1.17 (2020-04-15)

• Enhance conceal command so that it can read text from a file.

• Add WriteFile; allows the contents of a file to be held as an account field. When requested, the contents
are written to the file system.

5.15.11 1.16 (2019-12-25)

• Added ms_per_char setting that allows user to slow autotyping.

• Added rate attribute to scripts that allows user to slow autotyping.

• Added command_aliases setting to allow user to define their own command short-cuts. As part of this the
built-in short cuts were removed. See description of command_aliases in Configuring to get them back.

• interactive command now accepts ‘*’.

5.15.12 1.15 (2019-09-28)

• Add remind script command.

5.15. Releases 119

Avendesora Documentation, Release 1.25

5.15.13 1.14 (2019-04-28)

• Allow title recognizers to be functions.

• Add –all option to values command.

• Add vs alias to values command.

• Add instructions on how to mimic Symantec VIP authentication app.

5.15.14 1.13 (2019-02-06)

• Added interactive command.

• Added looping to questions command.

• Retargeted i and I command aliases.

• Use natural sort order by default.

• Refactored code to speed up start up with account discovery.

5.15.15 1.12 (2019-01-17)

• Updated the networth API example.

• Incorporated shlib package into Avendesora for better security.

• Added questions command.

• Refactored code to speed up start up.

5.15.16 1.11 (2018-06-14)

• Added is_secret argument to Secret classes.

• Added support for dmenu as alternative to built-in selection utility.

• Added –delete option to log command.

• Rename master and seed Account attributes to master_seed and account_seed.

• Improve portmortem and networth api examples.

• Improve the account value formatting.

5.15.17 1.10 (2018-02-18)

• Added support for qutebrowser.

5.15.18 1.9 (2017-12-25)

• Adds one-time passwords (an alternative to Google Authenticator).

• Added ‘vc’ command as an alias for ‘value –clipboard’.

120 Chapter 5. Contents

Avendesora Documentation, Release 1.25

5.15.19 1.8 (2017-11-23)

• Created the manual.

• Use keyboard writer if there is no access to TTY.

• Shifted to skinny config file.

• Warn the user if the archive is missing or stale.

• Improved get_value(), added add get_values(), add get_fields().

• Canonicalize names.

• Allow account name to be given even if TTY is not available.

• Allow default_field setting to be a list.

• Add render method to AccountValue.

• Changed the way multiple gpg ids are specified.

• Improved browse command.

• Added shift_sort to password generators.

• Added log command.

• Added phonetic command.

• Added browser version of help command.

It is recommended that in this release you trim your ~/.config/avendesora/config file to only include those settings that
you explicitly wish to override.

5.15.20 1.7 (2017-06-01)

• add credentials command.

5.15.21 1.6 (2017-04-07)

• Fix issues in sleep feature in autotype scripts.

5.15.22 1.5 (2017-03-01)

• Fixed bug in account discovery for URLs.

• Added get_composite, renamed get_field to get_scalar.

5.15.23 1.4 (2017-01-09)

• Improved error reporting on encrypted files.

• Added RecognizeFile().

5.15.24 1.3 (2017-01-08)

• Warn about duplicate account names.

5.15. Releases 121

Avendesora Documentation, Release 1.25

5.15.25 1.2 (2017-01-05)

5.15.26 1.1 (2017-01-03)

5.15.27 1.0 (2017-01-01)

• Initial production release.

• genindex

122 Chapter 5. Contents

Index

Symbols
2FA, 47

A
abbreviations, 21
abraxas, 57
accessories, 115
Account (class in avendesora), 91
account discovery, 39
account files, 79
account_file_mask setting, 84
account_templates setting, 85
accounts_files file, 79
AccountValue (class in avendesora), 93
add command, 58, 65
adding account, 27
adding account file, 27
additional_account_templates setting,

86
aliases, command, 83
all_accounts() (avendesora.PasswordGenerator

method), 89
alphabet command, 63
alphabet, phonetic, 57
ALPHANUMERIC (avendesora attribute), 73
amazon, 109
archive command, 58
archive file, 58, 59, 80
archive_file setting, 80
archive_stale setting, 80
Authy, 48

B
bank account, 25
BirthDate, 38
BirthDate (class in avendesora), 71
bitwarden export, 96
browse, 45

add, 58

browse command, 58
browser configuration, 39
browsers, 40
browsers setting, 82

C
challenge questions, 44, 108
challenge response, 56
challenge_response() (avendes-

ora.PasswordGenerator method), 89
changed

add, 59
changed command, 59
Chrome, 111
Chrome browser, 40
Chrome issues, 117
collaboration, 55
color_scheme setting, 85
command

add, 58
alphabet, 63
archive, 58
conceal, 59
credentials, 60
edit, 60
find, 61
help, 61
identity, 61
initialize, 61
interactive, 62
log, 62
login, 60
new, 62
phonetic, 63
questions, 63
reveal, 64
search, 64
value, 64
values, 65

command aliases, 83

123

Avendesora Documentation, Release 1.25

command_aliases setting, 83
compulsion, 54
conceal command, 59
config file, 79
config.doc file, 79
config_dir_mask setting, 84
configuring, 16
configuring browser, 39
configuring window manager, 17
confirming identity, 56
credential_ids setting, 81
credential_secrets setting, 81
credentials command, 60
credit cards, 112

D
default_account_template setting, 86
default_browser setting, 83
default_field setting, 80
default_protocol setting, 84
default_vector_field setting, 81
deleting account, 27
deleting account file, 27
DIGITS (avendesora attribute), 73
discover_account() (avendes-

ora.PasswordGenerator method), 89
discovery, 39
display_time setting, 81
DISTINGUISHABLE (avendesora attribute), 73
dmenu_executable setting, 87
duress, 54
dynamic_fields setting, 81

E
edit command, 60
edit_account setting, 82
edit_template setting, 82
encoding setting, 82
entropy, 14
exclude() (in module avendesora), 72
export() (avendesora.Account class method), 91

F
files as secrets, 53
find command, 61
find_accounts() (avendesora.PasswordGenerator

method), 89
Firefox browser, 40

G
generated secrets, 13, 33
get_account() (avendesora.PasswordGenerator

method), 90

get_codicil() (avendesora.PasswordError method),
93

get_composite() (avendesora.Account class
method), 91

get_culprit() (avendesora.PasswordError method),
93

get_fields() (avendesora.Account class method), 91
get_message() (avendesora.PasswordError method),

94
get_name() (avendesora.Account class method), 92
get_passcode() (avendesora.Account class method),

92
get_scalar() (avendesora.Account class method), 92
get_username() (avendesora.Account class method),

92
get_value() (avendesora.Account class method), 92
get_value() (avendesora.PasswordGenerator

method), 90
get_values() (avendesora.Account class method), 92
gmail, 109
google, 109
Google Authenticator, 47
GPG, 31
GPG (class in avendesora), 74
gpg_armor setting, 86
gpg_executable setting, 86
gpg_home setting, 86
gpg_ids setting, 86

H
hashes file, 79
help command, 61
HEXDIGITS (avendesora attribute), 73
Hidden, 31
Hidden (class in avendesora), 74
hidden_fields setting, 81
Hide, 31
Hide (class in avendesora), 73
highlight_color setting, 85

I
identity command, 61
initial configuration, 16
initialize command, 61
installing, 15
interactive command, 62
interactive queries, 46
issues, reporting, 117

K
known issues, 117
kpns, 117

L
label_color setting, 85

124 Index

Avendesora Documentation, Release 1.25

LETTERS (avendesora attribute), 73
log command, 62
log file, 62, 80
log_file setting, 80
login command, 60
LOWERCASE (avendesora attribute), 73

M
misdirection, 54
MixedPassword (class in avendesora), 69
ms_per_char setting, 81

N
networth example, 101
new command, 62
None, 65

O
obscured secrets, 30
One-time passwords, 47
OTB, 38
OTP, 47
OTP (class in avendesora), 71

P
Passphrase, 34
Passphrase (class in avendesora), 67
Password, 33
Password (class in avendesora), 66
PasswordError, 93
PasswordGenerator (class in avendesora), 89
PasswordRecipe, 37
PasswordRecipe (class in avendesora), 70
paste (in script), 50
phishing, 39
phonetic alphabet, 57
phonetic command, 63
PIN, 35
PIN (class in avendesora), 67
postmortem summary example, 98
previous_archive_file setting, 80
PRINTABLE (avendesora attribute), 73
PUNCTUATION (avendesora attribute), 73

Q
Question, 35
Question (class in avendesora), 68
questions, 44, 108
questions command, 63
qutebrowser, 40

R
rate (in script), 50

RecognizeAll, 41
RecognizeAll (class in avendesora), 74
RecognizeAny, 41
RecognizeAny (class in avendesora), 75
RecognizeCWD (class in avendesora), 76
RecognizeEnvVar (class in avendesora), 77
RecognizeFile, 42
RecognizeFile (class in avendesora), 78
RecognizeHost (class in avendesora), 76
RecognizeNetwork (class in avendesora), 78
RecognizeTitle, 40
RecognizeTitle (class in avendesora), 75
RecognizeURL, 40
RecognizeURL (class in avendesora), 76
RecognizeUser (class in avendesora), 77
remind (in script), 50
render() (avendesora.AccountValue method), 93
render() (avendesora.PasswordError method), 94
report() (avendesora.PasswordError method), 94
report() (avendesora.SecretExhausted method), 72
reporting issues, 117
reraise() (avendesora.PasswordError method), 94
return (in script), 50
reveal command, 64

S
Script (class in avendesora), 78
scripts, 50
Scrypt, 32
Scrypt (class in avendesora), 74
search command, 64
search_accounts() (avendes-

ora.PasswordGenerator method), 90
second factor, 47
SecretExhausted, 72
secrets, 30
security questions, 44, 108
selection_utility setting, 85
settings, 80
shell account, 18
shell command recognition, 115
shell windows, 43
SHIFTED (avendesora attribute), 73
short cuts, 21
short cuts, command, 83
sleep (in script), 50
ssh key example, 95
stealth accounts, 54
stealth_accounts file, 79
swarm accounts, 114
Symantec VIP, 49
SYMBOLS (avendesora attribute), 73

Index 125

Avendesora Documentation, Release 1.25

T
tab (in script), 50
terminal windows, 43
terminate() (avendesora.PasswordError method), 94
terminate() (avendesora.SecretExhausted method),

72
two page authentication, 109
typing, reducing, 21

U
updating a secret, 39
upgrading, 117
UPPERCASE (avendesora attribute), 73
use_pager setting, 85

V
value command, 64
values command, 65
verbose setting, 85
versioning a secret, 39

W
website account, 22
WHITESPACE (avendesora attribute), 73
window manager, 17
wireless router, 111
with_traceback() (avendesora.PasswordError

method), 95
WriteFile (class in avendesora), 74
writing files, 53

X
xdotool_executable setting, 86
xsel_executable setting, 86

126 Index

	What is Avendesora?
	Quick Tour
	Issues
	Contributing
	Contents
	Index

